ECE 2025: INTRODUCTION TO DIGITAL SIGNAL PROCESSING Assignment #6 Solutions

PROBLEM 6.3:

$$y[n] = 2x[n] - 5x[n-1] + 2x[n-2]$$

a) Linearity test:

Let
$$x[n] = a_1x_1[n] + a_2x_2[n]$$
, then
$$y[n] = 2(a_1x_1[n] + a_2x_2[n]) - 5(a_1x_1[n-1] + a_2x_2[n-1]) + 2(a_1x_1[n-2] + a_2x_2[n-2])$$

$$y[n] = 2a_1x_1[n] + 2a_2x_2[n] - 5a_1x_1[n-1] - 5a_2x_2[n-1] + 2a_1x_1[n-2] + 2a_2x_2[n-2]$$

$$y[n] = 2a_1x_1[n] - 5a_1x_1[n-1] + 2a_1x_1[n-2] + 2a_2x_2[n] - 5a_2x_2[n-1] + 2a_2x_2[n-2]$$

$$y[n] = a_1(2x_1[n] - 5x_1[n-1] + 2x_1[n-2]) + a_2(2x_2[n] - 5x_2[n-1] + 2x_2[n-2])$$

$$y[n] = a_1y_1[n] + a_2y_2[n]$$

Yes, y[n] is linear.

Time-invariance test:

We have to show that a delay in x[n] by n_0 , $x[n-n_0]$, results in a delay in y[n] to $y[n-n_0]$. To do this, we start by letting w[n] be the output when the input x[n] is delayed by n_0 giving

$$w[n] = 2x[n-n_0] - 5x[n-1-n_0] + 2x[n-2-n_0]$$

Then if we delay y[n] by n_0 , we obtain

$$y[n-n_0] = 2x[n-n_0] - 5x[n-1-n_0] + 2x[n-2-n_0]$$

We can see that

$$y[n-n_0] = w[n]$$

so y[n] is a time-invariant system.

Causal:

y[n] is causal since it depends only on x[n], x[n-1] and x[n-2] which are in the present or in the past.

b) Since y[n] is an LTI system, the frequency response is of the form

$$\hat{H(\omega)} = \sum_{k=0}^{M} b_k e^{-j\hat{\omega}k}$$

For y[n], M = 2 and $b_k = \{2, -5, 2\}$. Therefore,

$$\hat{H(\omega)} = 2e^{-j\hat{\omega}0} - 5e^{-j\hat{\omega}} + 2e^{-j2\hat{\omega}} = (2e^{j\hat{\omega}} - 5 + 2e^{-j\hat{\omega}})e^{-j\hat{\omega}} = (4\cos(\hat{\omega}) - 5)e^{-j\hat{\omega}}$$

c) The figure below shows a plot for the magnitude of the frequency response

$$|H(\hat{\omega})| = |(4\cos(\hat{\omega}) - 5)e^{-j\hat{\omega}}| = |4\cos(\hat{\omega}) - 5|$$

The figure below shows a plot of the phase in the range of $-\pi < \theta < \pi$ for the frequency response (note the $+\pi$ because $4\cos(\hat{\omega}) - 5$ is always negative)

$$\angle H(\hat{\omega}) = \angle (4\cos(\hat{\omega}) - 5)e^{-j\hat{\omega}} = -(\hat{\omega} + \pi)$$

d) Given the input $x_2[n] = 4 + 4\cos(0.5\pi(n-1))$, $y_1[n]$ can be calculated as follows. First calculate $\hat{H}(\omega)$ for the two frequencies in $x_2[n]$.

$$H(0) = (4\cos(0) - 5)e^{-j0} = -1$$

$$H(\pi/2) = (4\cos(\pi/2) - 5)e^{-j(\pi/2)} = -5e^{-j(\pi/2)} = 5e^{j(\pi/2)}$$

With these two frequency response values, $y_1[n]$ can be determined as follows

$$y_1[n] = (H(0))(4) + |H(\pi/2)||4|\cos(0.5\pi(n-1) + \arg(H(\pi/2)))$$

$$y_1[n] = -4 + 20\cos(0.5\pi(n-1) + \pi/2) = -4 + 20\cos(0.5\pi n)$$

PROBLEM 6.4:

$$y[n] = (x[n-1])^2$$

a) Linearity test:

Let
$$x[n] = a_1x_1[n] + a_2x_2[n]$$
, then
$$y[n] = (a_1x_1[n-1] + a_2x_2[n-1])^2 \neq (a_1x_1[n-1])^2 + (a_2x_2[n-1])^2$$
so $y[n]$ is not linear.

Time-invariance test:

We have to show that a delay in x[n] by n_0 , $x[n-n_0]$, results in a delay in y[n] to $y[n-n_0]$. To do this, we start by letting w[n] be the output when the input x[n] is delayed by n_0 giving

$$w[n] = (x[n-1-n_0])^2$$

Then if we delay y[n] by n_0 , we obtain

$$y[n-n_0] = (x[n-n_0-1])^2$$

We can see that

$$y[n-n_0] = w[n]$$

so y[n] is a time-invariant system.

Causal: y[n] is causal since it depends only on x[n-1] which is in the past.

b)
$$y_1[n] = (e^{j0.75\pi(n-1)} + e^{-j0.75\pi(n-1)})^2 = e^{j1.5\pi(n-1)} + e^{-j1.5\pi(n-1)} + 2e^{j0}$$

= $2\cos(1.5\pi(n-1)) + 2$

Notice that this sampled sinusoid has a frequency outside of the range $[-\pi, \pi]$ that a D-to-C converter assumes for signal reconstruction. This signal will therefore result in the folded alias as follows

$$y_1[n] = 2\cos((-0.5)\pi(n-1)) + 2 = 2\cos(0.5\pi(n-1)) + 2$$
 instead of the desired signal.

PROBLEM 6.5:

n	0	1	2	3	4	5	6	7	8	9	10	11
$h_2[n]$	1	1	1	1	1	1	1	1	1	1		
$h_1[n]$	1	-1										
	1	1	1	1	1	1	1	1	1	1		
		-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	
h[n]	1	0	0	0	0	0	0	0	0	0	-1	

Therefore, $h[n] = \delta[n] - \delta[n-10]$.

b) Given the impulse response h[n] from a), then y[n] = x[n] - x[n-10].

PROBLEM 6.6:

$$y[n] = x[n] - 2x[n-1] + 3x[n-2] - 4x[n-3] + 2x[n-4]$$

a) The block diagram for y[n] is as follows.

b) The impulse response for y[n] can be found by using $x[n] = \delta[n]$ which results in

$$y[n] \ = \ h[n] \ = \ \delta[n] - 2\delta[n-1] + 3\delta[n-2] - 4\delta[n-3] + 2\delta[n-4]$$

c) y[n] can be tabulated as follows.

n	-3	-2	-1	0	1	2	3	4	5	6	7	8	9	10
h[n]				1	-2	3	-4	2						
x[n]				1	-1	1								
				1	-2	3	-4	2						
					-1	2	-3	4	-2					
						1	-2	3	-4	2				
y[n]				1	-3	6	-9	9	-6	2				

Plotting y[n] gives

PROBLEM 6.7:

a) First, expand out $H(\omega)$

$$H(\hat{\omega}) = (1 + e^{-j\hat{\omega}})(1 - e^{-j\pi/4}e^{-j\hat{\omega}})(1 - e^{j\pi/4}e^{-j\hat{\omega}})$$

$$H(\hat{\omega}) = (1 + e^{-j\hat{\omega}})(1 - e^{j\pi/4}e^{-j\hat{\omega}} - e^{-j\pi/4}e^{-j\hat{\omega}} + e^{-j2\hat{\omega}})$$

$$H(\hat{\omega}) = (1 + e^{-j\hat{\omega}})(1 - e^{-j\hat{\omega}}(e^{j\pi/4} + e^{-j\pi/4}) + e^{-j2\hat{\omega}})$$

$$H(\hat{\omega}) = (1 + e^{-j\hat{\omega}})(1 - \sqrt{2}e^{-j\hat{\omega}} + e^{-j2\hat{\omega}})$$

$$H(\hat{\omega}) = (1 + e^{-j\hat{\omega}})(1 - \sqrt{2}e^{-j\hat{\omega}} + e^{-j2\hat{\omega}})$$

$$H(\hat{\omega}) = 1 - \sqrt{2}e^{-j\hat{\omega}} + e^{-j2\hat{\omega}} + e^{-j2\hat{\omega}} - \sqrt{2}e^{-j2\hat{\omega}} + e^{-j3\hat{\omega}}$$

$$H(\hat{\omega}) = 1 + (1 - \sqrt{2})e^{-j\hat{\omega}} + (1 - \sqrt{2})e^{-j2\hat{\omega}} + e^{-j3\hat{\omega}}$$

Considering the form $\hat{H(\omega)} = \sum_{k=0} b_k e^{-j\hat{\omega}k}$, the coefficients are $b_k = \{1, 1 - \sqrt{2}, 1 - \sqrt{2}, 1\}$

with M = 3. From these coefficients, y[n] can be written as

$$y[n] = \sum_{k=0}^{3} b_k x[n-k] = x[n] + (1-\sqrt{2})x[n-1] + (1-\sqrt{2})x[n-2] + x[n-3].$$

b) If the input is $x[n] = \delta[n]$, then the output is

$$y[n] = \delta[n] + (1 - \sqrt{2})\delta[n-1] + (1 - \sqrt{2})\delta[n-2] + \delta[n-3]$$

- c) With an input of $x[n] = Ae^{j\phi}e^{j\hat{\omega}n}$, the output will be of the form $y[n] = H(\hat{\omega})(Ae^{j\phi}e^{j\hat{\omega}n})$. Therefore, y[n] = 0 for all n only when $H(\hat{\omega}) = 0$. By consider the roots of $H(\hat{\omega})$, we know that $H(\hat{\omega}) = 0$ when: i) $(1 + e^{-j\hat{\omega}}) = 0$, ii) $(1 e^{j\pi/4}e^{-j\hat{\omega}}) = 0$ or iii) $(1 e^{j\pi/4}e^{-j\hat{\omega}}) = 0$. Solving each of these gives
 - i) $e^{-j\hat{\omega}} = -1$ which is true when $\hat{\omega} = \pi + 2\pi l$
 - ii) $e^{-j\hat{\omega}} = e^{j\pi/4}$ which is true when $\hat{\omega} = -\pi/4 + 2\pi l$
 - iii) $e^{-j\hat{\omega}} = e^{-j\pi/4}$ which is true when $\hat{\omega} = \pi/4 + 2\pi l$

Therefore, y[n] = 0 for all n when $\hat{\omega} = \{\pi + 2\pi l, \pi/4 + 2\pi l, -\pi/4 + 2\pi l\}$, l an integer.

For the specific range of $-\pi \le \hat{\omega} \le \pi$, the possible $\hat{\omega}$ are $-\pi$, π , $\pi/4$, and $-\pi/4$, but, note that π and $-\pi$ result in the same frequency.