EE-2025 Spring-2001

Lecture 10
Linearity & Time-Invariance
16-February-2001

Info: Web-CT, Lab, HW

Honor Code and Lab Reports !!!

- Lab Quiz next week during Lab #6MATLAB questions about the Labs
- Labs #5 and #6: Image Processing
 - Sampling, then Filtering: Blurring & Sharpening (De-Blur)
- Prob Set #7 posted this weekend
- Quiz #2 on 2-March
 - Prob Sets #3, #4, #5, #6 and #7

2/16/01

EE-2025 2000 rws/jMc

2

READING ASSIGNMENTS

- This Lecture:
 - Chapter 5, pp. 133-152
- Other Reading:
 - Recitation: Ch. 5, pp. 127-133, 142-146

CONVOLUTION

Next Lecture: Chapter 6, start

LECTURE OBJECTIVES

- BLOCK DIAGRAM REPRESENTATION
 - Components for Hardware
 - Connect Simple Filters Together to Build More Complicated Systems
- **GENERAL PROPERTIES of FILTERS**
 - LINEARITY
 - **TIME-INVARIANCE**

LTI SYSTEMS

==> CONVOLUTION

OVERVIEW

IMPULSE RESPONSE, h[n]

FIR case: same as $\{b_k\}$

CONVOLUTION

• GENERAL: y[n] = x[n]*h[n]

GENERAL CLASS of SYSTEMS

LINEAR and TIME-INVARIANT

■ ALL LTI have h[n] & use convolution!

2/16/01 EE-2025 2000 rws/jMc

GENERAL FIR FILTER

FILTER COEFFICIENTS {b_k}

DEFINE THE FILTER

 $y[n] = \sum b_k x[n-k]$

For example, $\{b_k\} = \{3, -1, 2, 1\}$

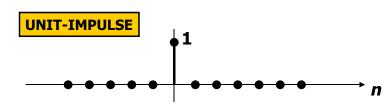
$$y[n] = \sum_{k=0}^{3} b_k x[n-k]$$

= $3x[n] - x[n-1] + 2x[n-2] + x[n-3]$

2/16/01

MATLAB for FIR FILTER

- yy = conv(bb, xx)
 - VECTOR **bb** contains Filter Coefficients
 - For example bb = [3,-1,2,1];
 - I DSP-First: yy = firfilt(bb,xx)
- FILTER COEFFICIENTS {b_k}


$$y[n] = \sum_{k=0}^{M} b_k x[n-k]$$

conv2() for images

The Unit Impulse Signal

x[n] has only one NON-ZERO VALUE

$$\delta[n] = \begin{cases} 1 & n = 0 \\ 0 & n \neq 0 \end{cases}$$

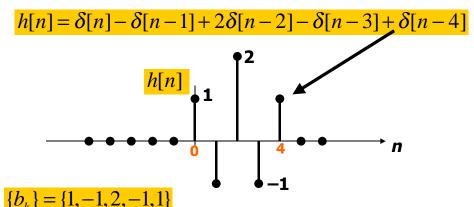
2/16/01

2/16/01

FIR IMPULSE RESPONSE

- Simply let $x[n] = \delta[n]$, then y[n] = h[n]
 - Filter Coeffs = Impulse Response

n	n < 0	0	1	2	3		M	M + 1	n > M + 1
$x[n] = \delta[n]$	0	1	0	0	0	0	0	0	0
y[n] = h[n]	0	b_0	b_1	b_2	b_3		b_M	0	0


$$h[n] = \sum_{k=0}^{M} b_k \delta[n-k]$$

2/16/01 EE-2025 2000 rws/jMc

10

MATH FORMULA for h[n]

■ Use SHIFTED IMPULSES to write h[n]

2/16/01 EE-2025 2000 rws/jMc

11

13

LTI: Convolution Sum

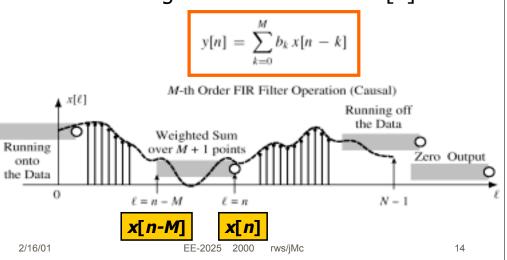
Output = Convolution of x[n] & h[n]

EE-2025 2000

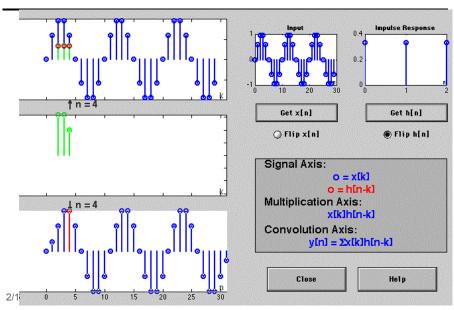
- NOTATION: y[n] = x[n]*h[n]
- Here is the FIR case:

2/16/01

$y[n] = \sum_{k=0}^{M} h[k]x[n-k]$ Same as $\mathbf{b_k}$ FINITE LIMITS


CONVOLUTION Example

$$h[n] = \delta[n] - \delta[n-1] + 2\delta[n-2] - \delta[n-3] + \delta[n-4]$$
$$x[n] = u[n]$$


n	¦ –1	0	1	2	3	4	5	6	7	
x[n]	0	1	1	1	1	1	1	1	•••	
h[n]	0	1	-1	2	-1	1	0	0	0	
h[0]x[n]	0	1	1	1	1	1	1	1	1	
h[1]x[n-1]	0	0	-1	-1	-1	-1	-1	-1	-1	
h[2]x[n-2]	0	0	0	2	2	2	2	2	2	
h[3]x[n-3]	0	0	0	0	-1	-1	-1	-1	-1	
h[4]x[n-4]	0	0	0	0	0	1	1	1	1	
y[n]	0	1	0	2	1	2	2	2		

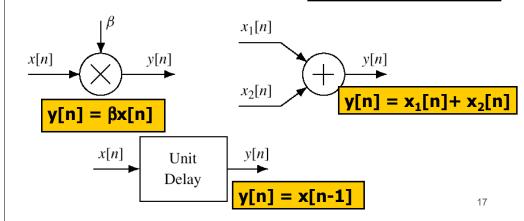
GENERAL FIR FILTER

SLIDE a Length-L WINDOW over x[n]

CONVDEMO: MATLAB GUI

HARDWARE STRUCTURES

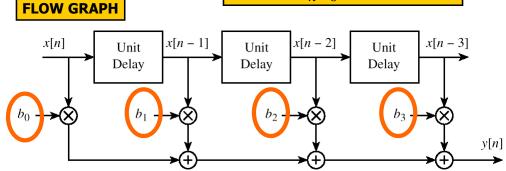
$$y[n] = \sum_{k=0}^{M} b_k x[n-k]$$


16

- INTERNAL STRUCTURE of "FILTER"
 - WHAT COMPONENTS ARE NEEDED?
 - I HOW DO WE "HOOK" THEM TOGETHER?
- SIGNAL FLOW GRAPH NOTATION

HARDWARE ATOMS

Add, Multiply & Store


$$y[n] = \sum_{k=0}^{M} b_k x[n-k]$$

2/16/01 EE-2025 2000 rws/jMc

FIR STRUCTURE

Figure 5.13 Block-diagram structure for the *M*th order FIR filter.

SYSTEM PROPERTIES

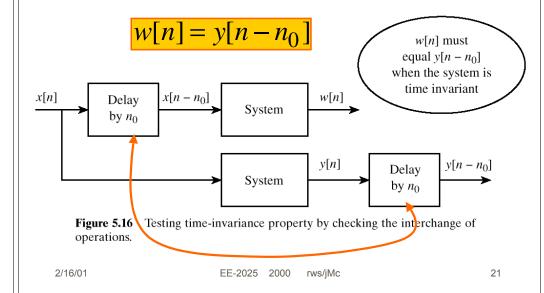
- MATHEMATICAL DESCRIPTION
- TIME-INVARIANCE
- LINEARITY
- CAUSALITY
 - "No output prior to input"

2/16/01

20

EE-2025 2000

rws/jMc


19

TIME-INVARIANCE

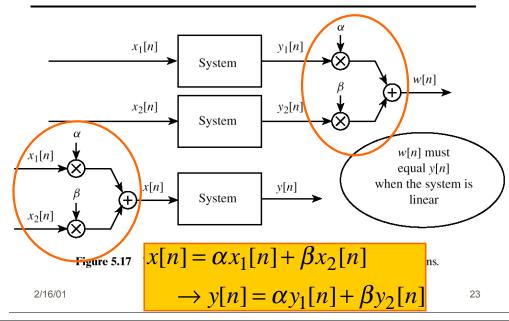
IDEA:

- "Time-Shifting the input will cause the same time-shift in the output"
- **EQUIVALENTLY**,
 - We can prove that
 - I The time origin (n=0) is picked arbitrary

TESTING Time-Invariance

2/16/01 EE-2025 2000 rws/jMc

LINEAR SYSTEM


- LINEARITY = Two Properties
- SCALING
 - "Doubling x[n] will double y[n]"
- SUPERPOSITION:
 - "Adding two inputs gives an output that is the sum of the individual outputs"

2/16/01

EE-2025 2000 rws/jMc

22

TESTING LINEARITY

FIR Filters are Linear

$$y[n] = \sum_{k=0}^{M} b_k x[n-k]$$

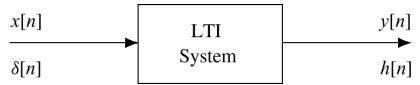
$$y[n] = \sum_{k=0}^{M} b_k (\alpha x_1[n-k] + \beta x_2[n-k])$$

$$y[n] = \alpha \left(\sum_{k=0}^{M} b_k x_1[n-k]\right) + \beta \left(\sum_{k=0}^{M} b_k x_2[n-k]\right)$$

$$y[n] = \alpha y_1[n] + \beta y_2[n]$$

$$\Rightarrow \text{Linear}$$

FIR Filters are Time-Invariant


$$x_1[n] = x[n - n_0]$$

$$w[n] = \sum_{k=0}^{M} b_k x_1[n - k] = \sum_{k=0}^{M} b_k x[(n - k) - n_0]$$

$$w[n] = \sum_{k=0}^{M} b_k x[(n - n_0) - k] = y[n - n_0]$$

$$\Rightarrow \text{ Time - invariant}$$

LTI (Linear & Time nvariant) SYSTEMS

COMPLETELY CHARACTERIZED by h[n]

$$y[n] = x[n] * h[n] = \sum_{k=-\infty}^{\infty} h[k]x[n-k]$$

FIR Example: h[n] is same as b_k

$$y[n] = x[n] * h[n] = \sum_{k=0}^{M} b_k x[n-k] = \sum_{k=0}^{M} h[k] x[n-k]$$
2/16/01 EE-2025 2000 rws/jMc 26

POP QUIZ

- FIR Filter is "FIRST DIFFERENCE"
 - y[n] = x[n] x[n-1]
- Write output as a convolution
 - Need impulse response
 - If Then, anoth $h[n] = \delta[n] \delta[n-1]$ utput:

$$y[n] = (\delta[n] - \delta[n-1]) * x[n]$$

2/16/01 EE-2025 2000 rws/jMc 27

CASCADE SYSTEMS

- Does the order of $S_1 \& S_2$ matter?
 - I NO, LTI SYSTEMS can be rearranged !!!
 - I WHAT ARE THE FILTER COEFFS? $\{b_k\}$

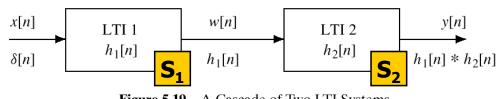
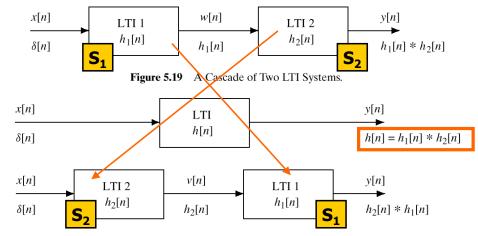



Figure 5.19 A Cascade of Two LTI Systems.

28

CASCADE EQUIVALENT

■ Find "overall" h[n] for a cascade ?

Figure 5.20 Switching the order of cascaded LTI systems.

2/16/01 EE-2025 2000 rws/jMc