EE-2025

Fall-2001

Lecture 10 **Linearity & Time-Invariance** 01-Oct-01

Info: Web-CT, Lab, HW

UTILIZE OFFICE HOURS

- Prepare for on-line Pre-Post-Labs
 - Run MATLAB GUIs for Lab #6
- Labs #5 and #6: Image Processing
 - Sampling & Zooming
 - Deconvolution: Image Restoration
- Quiz #2 on 22-Oct

Problem Sets #3, #4, #5, #6 and #7

9/29/2001

EE-2025 Fall-2001 iMc/rmm

EDUCATION

Education is the one product where the consumer tries to get as little as possible for his/her money.

READING ASSIGNMENTS

- This Lecture:
 - Chapter 5, pp. 133-152
- Other Reading:
 - Recitation: Ch. 5, pp. 127-133, 142-146 **CONVOLUTION**
 - Next Lecture: Chapter 6, start

3

9/29/2001

2

LECTURE OBJECTIVES

BLOCK DIAGRAM REPRESENTATION

- Components for Hardware
- Connect Simple Filters Together to Build More Complicated Systems
- GENERAL PROPERTIES of FILTERS
 - LINEARITY

9/29/2001

- I TIME-INVARIANCE
- ICE **LTI SYSTEMS**

EE-2025 Fall-2001 iMc/rmm

==> <u>CONVOLUTION</u>

	_
OVERVIEW	

- IMPULSE RESPONSE, h[n]
 - FIR case: same as $\{b_k\}$
- CONVOLUTION
 - GENERAL: y[n] = x[n]*h[n]
- GENERAL CLASS of SYSTEMS
 - LINEAR and TIME-INVARIANT
- ALL LTI have h[n] & use convolution !

9/29/2001

EE-2025 Fall-2001 jMc/rmm

6

DIGITAL FILTERING

BUILDING BLOCKS

7

5

SPECIAL INPUT SIGNALS

FIR IMPULSE RESPONSE

- Convolution = Filter Definition
 - Filter Coeffs = Impulse Response

n	<i>n</i> < 0	0	1	2	3		М	M + 1	n > M + 1
$x[n] = \delta[n]$	0	1	0	0	0	0	0	0	0
y[n] = h[n]	0	b_0	b_1	b_2	<i>b</i> ₃		b_M	0	0

9/29/2001

EE-2025 Fall-2001 jMc/rmm

MATH FORMULA for h[n]

LTI: Convolution Sum

CONVOLUTION Example

$h[n] = \delta[n]$] <i>– δ</i> [<u>n</u> –	-1]+	-28	[<i>n</i> –	2]-	-δ[ı	ı — 3	[]+ð	$\delta[n-4]$
x[n] = u[n]]									
1	<i>i</i> -1	0	1	2	3	4	5	6	7	
x[n]] 0	1	1	1	1	1	1	1		
h[n] 0	1	-1	2	-1	1	0	0	0	
	0	1	1	1	1	1	1	1	1	
	0	0	-1	-1	-1	-1	-1	-1	-1	
	0	0	0	2	2	2	2	2	2	
	0	0	0	0	-1	-1	-1	-1	-1	
	0	0	0	0	0	1	1	1	1	
9/29/2001 y[n] 0	1	0	2	1	2	2	2		15

GENERAL FIR FILTER

POP QUIZ

HARDWARE STRUCTURES

INTERNAL STRUCTURE of "FILTER"
WHAT COMPONENTS ARE NEEDED?
HOW DO WE "HOOK" THEM TOGETHER?
SIGNAL FLOW GRAPH NOTATION

HARDWARE ATOMS

19

FIR STRUCTURE

Figure 5.13 Block-diagram structure for the *M*th order FIR filter.

Moore's Law for TI DSPs

SYSTEM PROPERTIES

- MATHEMATICAL DESCRIPTION
- <u>TIME-INVARIANCE</u>
- LINEARITY
- CAUSALITY
 - No output prior to input"

TIME-INVARIANCE

- IDEA:
 - Time-Shifting the input will cause the same time-shift in the output"

EQUIVALENTLY,

We can prove that
 The time origin (n=0) is picked arbitrary

TESTING Time-Invariance

LINEAR SYSTEM

- LINEARITY = Two PropertiesSCALING
 - Doubling x[n] will double y[n]"

SUPERPOSITION:

Adding two inputs gives an output that is the sum of the individual outputs"

9/29/2001	
-----------	--

EE-2025 Fall-2001 jMc/rmm

26

LTI SYSTEMS

- LTI: Linear & Time-Invariant
- COMPLETELY CHARACTERIZED by:
 - I IMPULSE RESPONSE h[n]
 - I <u>CONVOLUTION</u>: y[n] = x[n]*h[n]
 - The "rule" defining the system can ALWAYS be rewritten as convolution
- FIR Example: h[n] is same as b_k

POP QUIZ

CASCADE SYSTEMS

CASCADE EQUIVALENT

