	Spring 200/	FINAL EXAM
Lecture 26 Review 28-Apr-06	Spring-2008	<list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item>

Senior Design Course(s)

- Graduation requires
 - ECE-4000 Project Engineering
 - ECE-4006 Design Project
 - Can specialize in different areas, e.g., DSP
 - Real-Time DSP Projects
- DSP concentration
 - ECE-3075 Random Signals
 - ECE-4270 DSP
 - ECE-4271 Applications of DSP
 - ECE-4273 ASICs for DSP

.

ECE-2025 Fall-03 jMc

<u>ecture</u>

LECTURE OBJECTIVES

- Review
 - Fourier Theory and Frequency Content
 - Spectrograms
 - Filtering (LTI systems)
 - Sampling (and Aliasing)
 - Digital Filters: h[n], H(z), Frequency Response

4/25/2006

4/25/2006

<section-header><section-header><equation-block><equation-block><equation-block><equation-block><equation-block><equation-block><equation-block><equation-block><equation-block><equation-block><equation-block>

THX SPECTROGRAM

Radio Astronomy - What

Images courtesy NRAO/AUI (www.vla.nrao.edu)

Radio Astronomy - How

From physics.njit.edu/~dgary/728/Lecture6.html 4/25/2006 ECE-2025 Fall-03 jMc

7

8

Magnetic Resonance Imaging

Formatted Raw Data **Desired Image** Images by Cynthia B. Paschal from www.bme.vanderbilt.edu/Paschal 4/25/2006 ECE-2025 Fall-03 iMc

Radar Imaging

Desired Image

Images from Aaron Lanterman's research

4/25/2006

ECE-2025 Fall-03 jMc

Yes, FTs show up in optics

Characterize how an optical system blurs images you're trying to make, like on the Hubble Space Telescope

Images by James R. Fienup from http://cfao.ucolick.org/presentations/springretreat2003/ SRO3 Fienup Hubble.pdf 11

4/25/2006

2-D

Impulse

response

Other places FTs show up

Fourier theory tells how to do X-ray Computer Aided Tomography (CAT scans)

- "Projection Slice Theorem"
- Under some approximations, FTs characterize antenna patterns (so yes, they show up in electromagnetics!)
- Determining protein shapes with X-ray crystallography and NMR

IMPORTANT CONCEPTS

ALL Signals have Frequency Content
Sum of Sinusoids
Complex Exponentials
Impulses, Square Pulses
FLTERS alter the Frequency Content
Image Processing Example: Blur
Linear Time-Invariant Processing
3 Domains for Analysis

SINUSOIDAL RESPONSE

- x[n] = SINUSOID => y[n] is SINUSOID
- Get MAGNITUDE & PHASE from H(z)

if
$$x[n] = e^{j\hat{\omega}n}$$
 then
 $y[n] = H(e^{j\hat{\omega}})e^{j\hat{\omega}n}$
where $H(e^{j\hat{\omega}}) = H(z)|_{z=e^{j\hat{\omega}}}$

THREE DOMAINS $H(z) = \frac{\sum b_k z^{-k}}{1 - \sum a_\ell z^{-\ell}}$ $H(z) = \frac{\sum b_k z^{-k}}{1 - \sum a_\ell z^{-\ell}}$ (a_k, b_k) $(a_k,$

Figure 8.13 Relationship among the *n*-, *z*-, and $\hat{\omega}$ -domains. The filter coefficients $\{a_k, b_k\}$ play a central role.

THE FUTURE

- Circuits & Laplace Transforms H(s) Polynomials: Poles & Zeros h(t) $H(j\omega)$ Implementation is RLC-op-amp circuit

Shannon Sampling Theorem

- <u>"SINC" Interpolation</u> is the ideal
 - PERFECT RECONSTRUCTION
 - of BANDLIMITED SIGNALS

A signal x(t) with bandlimited Fourier transform such that $X(j\omega) = 0$ for $|\omega| \ge \omega_b$ can be reconstructed exactly from samples taken with sampling rate $\omega_s = 2\pi/T_s \ge 2\omega_b$ using the following bandlimited interpolation formula:

$$x_r(t) = \sum_{n=-\infty}^{\infty} x(nT_s) \frac{\sin\left\lfloor\frac{\pi}{T_s} \left(t - nT_s\right)\right\rfloor}{\frac{\pi}{T_s} \left(t - nT_s\right)}.$$

4/25/2006

ECE-2025 Fall-03 jMc

17

19

Frequency-Domain Representation of Sampling

INSTANTANEOUS FREQ of the Chirp

- Chirp Signals have Quadratic phase
- Freq will change LINEARLY vs. time

$$x(t) = A\cos(\alpha t^{2} + \beta t + \varphi)$$

$$\Rightarrow \psi(t) = \alpha t^{2} + \beta t + \varphi$$

$$\Rightarrow \omega_i(t) = \frac{d}{dt}\psi(t) = 2\alpha t + \beta$$

CHIRP WAVEFORM

21

• $\psi(t)$ can be anything:

$$x(t) = A\cos(\alpha\cos(\beta t) + \varphi)$$

$$\Rightarrow \omega_i(t) = \frac{d}{dt}\psi(t) = -\alpha\sin(\beta t)$$

ECE-2025 Fall-03 jMc

ψ(t) could be speech or music:
FM radio broadcast

SINE-WAVE FREQUENCY MODULATION (FM)

The END

4/25/2006

 Education is what survives when what has been learned has been forgotten

B.F. Skinner