GEORGIA INSTITUTE OF TECHNOLOGY SCHOOL of ELECTRICAL and COMPUTER ENGINEERING

ECE 2025 Spring 2006 Problem Set #11

Assigned: 8-April-06 Due Date: Week of 17-April-06

Quiz #3 will be given on 21-April. One page $(8\frac{1}{2} \times 11 \text{ in.})$ of handwritten notes allowed.

Reading: In SP First, all of Chapter 10: Frequency Response; Chapter 11: Continuous-Time Fourier Transform, Sections 11-1 through 11-9.

 \implies Please check the "Bulletin Board" often. All official course announcements are posted there.

ALL of the **STARRED** problems will have to be turned in for grading. A solution will be posted to the web. Some problems have solutions similar to those found on the CD-ROM.

Your homework is due in recitation at the beginning of class. After the beginning of your assigned recitation time, the homework is considered late and will be given a zero. Please follow the format guidelines (cover page, etc.) for homework.

PROBLEM 11.1*:

Signal Processing First, Chapter 11, Problem 2, page 342. (Forward Fourier Transform)

PROBLEM 11.2*:

Signal Processing First, Chapter 11, Problem 3, page 342. (Inverse Fourier Transform)

PROBLEM 11.3*:

Signal Processing First, Chapter 11, Problem 14, page 344. (Fourier Series Filtered by LTI System)

PROBLEM 11.4*:

A continuous-time LTI system is defined by the impulse response

$$h(t) = \delta(t) - be^{-bt}u(t)$$

- (a) Determine the Fourier transform, $H(j\omega)$, which is also the frequency response of the system. Express your answer as a rational form with a simple numerator and denominator.
- (b) Make a plot of the magnitude of the frequency response versus ω when $b = 200\pi$. The plot should cover the frequency range $0 \le \omega < \infty$, but if you check your plot with MATLAB you will have to pick a maximum frequency, and that upper frequency should be at least ten times b.
- (c) Describe the type of filter in the plot of the previous part (e.g., LPF, HPF, or BPF).
- (d) Determine the phase of $H(j\omega)$ at $\omega = 0,200\pi$, and 1000π .
- (e) When the input signal is $x(t) = 10 + 20\cos(200\pi t + \pi/3) + 30\cos(1000\pi t)$, determine the output signal. Use the value of b given in part (b).

PROBLEM 11.5*:

The impulse response of an LTI system is

$$h(t) = \cos(80\pi(t - 1/100)) \frac{\sin(20\pi(t - 1/100))}{\pi(t - 1/100)}$$

- (a) Determine the frequency response $H(j\omega)$ of the system which is an ideal filter.
- (b) Make a sketch of the magnitude and phase of $H(j\omega)$ over the frequency range $-\infty < \omega < \infty$.
- (c) Describe the type of filter in the plot of the previous part (e.g., LPF, HPF, or BPF).
- (d) Using the filter defined above, determine the output of the system when the input signal is

$$x(t) = \cos(75\pi(t - 1/100)) + \frac{\sin(20\pi(t - 1/100))}{\pi(t - 1/100)}$$

Hint: Use frequency-domain methods: Determine the Fourier transform of the input signal, apply the filter in the frequency-domain to determine the Fourier transform of the output, and then do the inverse transform to get the corresponding output signal.