Cryptograp

nic Cormr

Neec

Compl

Madan Musuvathi

Microsoft Research

putations
ers

Microsoft's Commitment to Research

~1000 People and growing!
ca. 650 researchers
ca. 350 engineers, testers, designers, PMs

Labs around the World
Bangalore, Beijing, Cambridge (MA), Cambridge (UK), New York, Redmond

Sponsor of Conferences and Academic Research

Biggest PhD Internship Program

22,000+

published papers

1

Fields Medal

30+

Researchers/projects
recognized in 2017

4,616

worldwide patents

5

Turing Awards

1

Emmy for delivering
ultra-high def video

3,596

worldwide
patents pending

2

MacArthur
Fellowships

7

labs and locations
worldwide

Our Mission & Culture (est. 1991)

. — R .- : ~
‘ Y ;;l, ,
' Incubate
‘ Advance the : disruptive
state-of-the-art in quldly tr'ansfer technolcgies and
computer science Innovations new business
A models

S
ar
L

.

Programming Models

Programming Languages HPC, Compilers, Systems
Verified Programming

R'I_SE Reliability Tools
Research in Software Engineering Productivity

Software SE4AI & Al4SE
Engineering

Foundations

Automated Reasoning Theorem Proving

Research in Software Engineering (RIiSE

) @28 69

Tom Ball Christian Bird Nikolaj Bjorner Ella Bounimova Sebastian Burckhardt Patrice Godefroid Peli de Halleux Markus Kuppe Shuvendu Lahiri

F

Uy
|

-~
1

Y

Daan Leijen Saeed Maleki Mark Marron Kenneth McMillan Michal Moskal Leonardo de Moura Madan Musuvathi Todd Mytkowicz Lev Nachmanson

-

Nachi Nagappan Jonathan Protzenko Tahina Ramananandro Olli Saarikivi Nikhil Swamy Margus Veanes Tom Zimmermann Ben Zorn

RISE Hires 2019

A
Daniel Selsam Denae Ford Robinson Olli Saarikivi Teddy Seyed
Ph.D. Stanford University Ph.D. NC State University Ph.D. Aalto University Ph.D. University of Calgary

Formal Methods & Machine Learning HCI & Software Engineering Compiler Systems HCI & Embedded Systems

Cryptographic Computations
enable
Privacy Preserving Applications

Fully Homomorphic Encryption (FHE)

Client Server

P |
data data
~T
: :
Encryption key never leaves the client

Simple trust model: trust yourself, the math,

the enc. library, but no one else

answer “ answer

m
’

Secure Multi-Party Computation (Secure MPC)

Client Server
X Protocol Il y
[J
©
F(x,y)

Nothing is leaked except the output

Semi-Honest Threat Model

e Hardware and software execute requested computation faithfully
e Hardware and software are curious about the data

e Client or user data must remain confidential

Programming Cryptographic Computations is Hard

* Involves low-level circuit programming
* Need different schemes for Boolean vs arithmetic operations

* Requires cryptographic expertise
* To guarantee correctness, security, and efficiency

EzPC: Compiler Framework for
Secure MPC

Divya Gupta, Nishanth Chandran, Aseem Rastogi, Rahul Sharma
MSR India

Client Server

13

Secure Multi-Party Computation (Secure MPC)

Client Server

y
g Y
a a) a)
X — Xy Xr y_YrIyr
_ L J - Y

\L/

| Fey |

E
[N

EzPC Compilation

Function: wtx > b

uint w[30] = input1();
uint x[30] = input2();
uint b = input1();

uint acc = 0;
foriin [0:30] {

acc = acc + (w[i] *x[i]); }

Output2((acc>b?1:0);

* Base types and array types

 Mathematical operators (+, *, >, &, >>,)

» Statements for assignments, array read/write,
bounded for loops and if condition

//circuit builders for arithmetic and boolean

2 Circuit* ycirc = s[S_YAO]->GetCircuitBuildRoutine();

=

Circuit* acirc = s[S_ARITH]->GetCircuitBuildRoutine();

if (role == SERVER) {
//Put gates to read w and b
} else { //role == CLIENT

//Put gates to read x
}

for(uint32_t i = 0; i < 30; i++) { //acc = w'x
share * a_t_0 = acirc->PutMULGate(a_w[i], a_x[il);
a_acc = acirc->PutADDGate(a_acc, a_t_0);

}

6 //convert acc and b from arithmetic to boolean

share *y_acc = ycirc->PutA2YGate(a_acc);
share *y_b = ycirc->PutA2YGate(a_b);

n share *y_pred = ycirc->PutGTGate (y_acc, y_b);

uint32_t one = 1 ;

» share *y_1 = ycirc->PutCONSGate (one, bitlen);

uint32_t zero = 0 ;

u share *y_0 = ycirc->PutCONSGate(zero, bitlen);

share *y_t = ycirc->PutMUXGate (y_pred, y_1, y_0);

share *y_out = ycirc->Put0UTGate(y_t, CLIENT);

% party->ExecCircuit ();

if (role==CLIENT) { //only to the client
uint32_t _o = y_out->get_clear_value<uint32_t>();

11}

15

EzPC Compilation

Function: wtx > b

uint w[30] = input1();
uint x[30] = input2();
uint b = input1();

uint acc = 0;
foriin [0:30] {

acc = acc + (w[i] *x[i]); }

Output2((acc>b?1:0);

* Assign variables to Boolean or Arithmetic

e Automatically insert conversion operators

* Use cryptographic cost model to optimize
compilation

//circuit builders for arithmetic and boolean

2 Circuit* ycirc = s[S_YAO]->GetCircuitBuildRoutine();

=

Circuit* acirc = s[S_ARITH]->GetCircuitBuildRoutine();

if (role == SERVER) {
//Put gates to read w and b
} else { //role == CLIENT

//Put gates to read x
}

for(uint32_t i = 0; i < 30; i++) { //acc = w'x
share * a_t_0 = acirc->PutMULGate(a_w[i], a_x[il);
a_acc = acirc->PutADDGate(a_acc, a_t_0);

}

6 //convert acc and b from arithmetic to boolean

share *y_acc = ycirc->PutA2YGate(a_acc);
share *y_b = ycirc->PutA2YGate(a_b);

n share *y_pred = ycirc->PutGTGate (y_acc, y_b);

uint32_t one = 1 ;

» share *y_1 = ycirc->PutCONSGate (one, bitlen);

uint32_t zero = 0 ;

u share *y_0 = ycirc->PutCONSGate(zero, bitlen);

share *y_t = ycirc->PutMUXGate (y_pred, y_1, y_0);

share *y_out = ycirc->Put0UTGate(y_t, CLIENT);

% party->ExecCircuit ();

if (role==CLIENT) { //only to the client
uint32_t _o = y_out->get_clear_value<uint32_t>();

11}

16

Fully-Homomorphic Encryption (FHE)
Allows computation on encrypted data
[m] £ Enc(m)
[a]l @ [b] = [a + b]
[a] & [b] = [axb]

FHE timeline

First FHE scheme [Gentry] Efficient fixed-points [CKKS]

1978 2012

® ®

2009 2016

Proposal of FHE [RAD] Integer schemes [BGV, BFV]

Performance overhead of FHE over unencrypted

1.0E+12

1.0E+10

1.0E+08

1.0E+06

1.0E+04

Slowdown

1.0E+02

1.0E+00

Need better
encryption schemes,
compilers,
runtimes, and
hardware support

)\
[|

FHE programming challenges

Computation is slow: ~“50 ms per multiplication

Very large SIMD vector widths: ~16K
can operate at 8086 speeds if you can utilize the parallelism

No branching
a bug and a feature

Tradeoff between correctness, security, message bloat, and performance
requires setting parameters correctly

Different encryption schemes provide different functionalities
arithmetic, Boolean logic, table lookups, ...

Bootstrap periodically to reduce noise

Noise growth challenge

Noise growth proportional to multiplicative depth
Noise([[axb]) = max(Noise([[b]), Noise[a]) + k

Need expensive bootstrapping after ~20 multiplications

depth

| parallelize >

log(depth)

CHET - an FHE compiler [Dathathri et al. “19]

Neural Net Inference CHET B

LeNet5-small 3s|/

LeNet5-medium 11s

LeNet5-large 35s

Median-liver-cancer 56 s

SqueezeNet-CIFAR 165s| TR T

Compiling Tensor Programs for FHE libraries

Tensor Programs

CHET Compiler «—— Automation and optimizations

«—— FHE-optimized tensor kernels

HEAAN SEAL «—— FHE libraries for integer/fixed-point arithmetic
CPU

Encryption Parameters

Ciphertext is a high-degree polynomial

=ay-xNt+ay_;-xN"T+a-x+a

m
’

N: degree of the polynomial
(: modulus of the coefficients

Encryption Parameters

FHE standard

ure
Correct Sec

Incorrect

N: degree of the polynomial
(: modulus of the coefficients

Depends on circuit depth

25

Performing Fixed Points with Scaling Factors

8 scale=10 B

scale =10 |3 Modulus growth limits depth of circuits

242 =2.42

scale =100 ,

Rescaling operation in CKKS 16

8 scale=10 ?

scale=10 ,

242 =2.42

scale =100 g3 Compiler needs to insert
rescale

by 10 rescale operations effectively

scale=10 ,

But, CKKS Is approximate

8 scale=10 B

scale=10 ,

254 =242 +¢€

scale =100 ,

scale=10 ,

rescale
by 10

Solution: inflate scale

8 scale =100 ?

220 =2.2

m
scale=100 K

24212 =242 +¢€

scale = 10000 fry

scale=10 ,

Compiler needs to manage
precision and error

rescale
by 1000

2.4

FHE Packing

Pack many plaintext scalars into single ciphertext vector

o Fixed width of N/2 (N is 210 or larger)

1\1 2\2 3 l3 4\4 5 l5 6\6

=
11 22 33 44 55 660 0}

FHE Vectorization

e Limited set of SIMD instructions:

O

O

Element-wise addition
Element-wise subtraction
Element-wise multiplication
Rescale (all elements)

Rotation

e Random access of a vector
element not supported

IEEEIEICIEY.

lv V-2
BEIE I
V=Rot(V,3)
EIOEEICICIET.
V V- Mask

Example of Matrix Multiplication: C=A x B

| B' = Rot(B,4)

|B"=B+B'

32

Example of Matrix Multiplication: C=A x B

C" = C' TRot(C’

C=C"-Mask

nlen o

,6)

0 0 0 0

]

CHET chooses
data layouts

automatically

33

Mapping Tensors to Vector of Vectors

L

w
There are many ways
to layout tensors into

vectors, with
different tradeoffs

%%

%

HW (Height-Width) layout:
* Easier convolutions due to channels being aligned
* Wasted space

!

0 |

i

CHW (Channel-Height-Width) layout:
* More efficient space usage
e Convolutions require more rotations

34

Data Layout Selection

e Search space: explore possible data layouts
o Cost estimation: estimate cost of each search point

e Pick the best-performing one

Data Layout Selection: Search Space

e Search space is exponential l
o 2 choices per tensor operation: HW or CHW Convolution
l HW or CHW?
e Prune search space: use domain knowledge L
.. . o Activation
-> limits to only 4 choices for the circuit
l HW or CHW?
o Convolution faster in HW while rest faster in CHW)
Pooling
o Matrix multiplication faster if output is in CHW
l HW or CHW?
Matrix Mult.

l HW or CHW?

Data Layout Selection: Cost Estimation

o Cost model for FHE primitives:
o Asymptotic complexity (specific to FHE scheme)

o Microbenchmarking to determine constants

e Cost of a circuit: sum the costs for all operations

Experimental Setup

Systems:
o Hand-written HEAAN
o CHET with HEAAN
o CHET with SEAL

Machine:

o Dual-socket Intel Xeon E5-2667v3

o 16 cores

o 224 GB of memory

e FHE-compatible Deep Neural Networks (DNN):

Dataset | # Layers | #FP
ops
(M)

LeNet-5-small

LeNet-5-medium
LeNet-5-large
Industrial

SqueezeNet-CIFAR
e Evaluation:

MNIST

MNIST 8 5.8
MNIST 8 8.7
- 13 -
CIFAR-10 19 37.8

Accurac

98.5%
99.0%
99.3%

81.5%

o Latency of image inference (batch size = 1)

38

CHET outperforms hand-written implementations

2048 -
)

D

n
— 256-

>

o

c
L
8 3.

0]

(o))

©

>
<]

LeNet-5-small LeNet-5-medium LeNet—l5—Iarge Industrial Squeezel\'let—CIFAR
Network

B CHET-SEAL | CHET-HEAAN [l Manual-HEAAN

39

Best data layout depends on JFHE library and DNN

CHET-SEAL CHETSHEAAN

35 14
C [
; 3 ; 12
O O
© ©
; 25 ; 10
O O il
v ik wm g

1.5 6

1 4

0 0

1 2 3 4 5 1 2 3 4 5
M Seriesl M Series2 M Series3 [Series4 B Seriesl M Series2 M Series3 [Series4

40

Generalizing CHET (ongoing work)

C++/ONNX

FHE Programs
FHE Compiler
SEAL

GPU

Making Computations FHE compatible

3

e Cannot evaluate non-polynomial operations

2

* RelU B
* Max pooling PR : 0 2
ReLU(x)

* Options: 3

2.5

1. Replace with polynomial approximation ;

2. Combine Boolean and arithmetic schemes)

0
-4 -2 05 0 2

x%24+a-x

Conclusions

* Cryptographic computation is a “PL + HPC + Systems” problem

* Currently at 8086 speeds but 2-3x already possible
e Better encryption schemes, compilers, runtime systems, HW support

* Interesting applications possible at current speeds

* Many PL challenges still open

