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Cryptographic Computations 
enable 

Privacy Preserving Applications



Fully Homomorphic Encryption (FHE)
Client Server

data datadata

answeransweranswer

FHE
Compute

Encryption key never leaves the client

Simple trust model: trust yourself, the math, 
the enc. library, but no one else



Secure Multi-Party Computation (Secure MPC)
Client Server

𝑥 𝑦Protocol 𝚷

𝐹(𝑥, 𝑦)

Nothing is leaked except the output



Semi-Honest Threat Model

● Hardware and software execute requested computation faithfully

● Hardware and software are curious about the data

● Client or user data must remain confidential
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Programming Cryptographic Computations is Hard

• Involves low-level circuit programming
• Need different schemes for Boolean vs arithmetic operations
• Requires cryptographic expertise 
• To guarantee correctness, security, and efficiency



EzPC: Compiler Framework for 
Secure MPC

Divya Gupta, Nishanth Chandran, Aseem Rastogi, Rahul Sharma
MSR India
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Client Server

𝑥 𝑦Protocol 𝚷

𝐹(𝑥, 𝑦)



Secure Multi-Party Computation (Secure MPC)
Client Server

𝑥 𝑦

𝐹(𝑥, 𝑦)

𝑥 − 𝑥) 𝑥) 𝑦 − 𝑦) 𝑦)

𝐹 𝐹

𝐹* 𝐹+



EzPC Compilation
Function: 𝑤-𝑥 > 𝑏

• Base types and array types
• Mathematical operators (+, *, >, &, >>, ….)
• Statements for assignments, array read/write, 

bounded for loops and if condition

uint w[30]	=	input1();
uint x[30]	=	input2();
uint b	=	input1();

uint acc =	0;
for i in [0:30]	{
acc =	acc +	(w[i]	*	x[i]);	}

Output2((acc >	b	?	1	:	0);				
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EzPC Compilation
Function: 𝑤-𝑥 > 𝑏
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16

• Assign variables to Boolean or Arithmetic
• Automatically insert conversion operators
• Use cryptographic cost model to optimize 

compilation



Allows computation on encrypted data

𝑚 ≜ 𝐸𝑛𝑐 𝑚

𝑎 ⊕ 𝑏 = 𝑎 + 𝑏

𝑎 ⊗ 𝑏 = 𝑎×𝑏

Fully-Homomorphic Encryption (FHE)



1978

Proposal of FHE [RAD]

2009

First FHE scheme [Gentry] 

2012

Integer schemes [BGV, BFV]

2016

Efficient fixed-points [CKKS]

FHE timeline



Performance overhead of FHE over unencrypted
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Computation is slow: ~50 ms per multiplication

Very large SIMD vector widths: ~16K
can operate at 8086 speeds if you can utilize the parallelism

No branching
a bug and a feature

Tradeoff between correctness, security, message bloat, and performance
requires setting parameters correctly

Different encryption schemes provide different functionalities
arithmetic, Boolean logic, table lookups, …

Bootstrap periodically to reduce noise

FHE programming challenges



Noise growth challenge

Noise growth proportional to multiplicative depth
𝑁𝑜𝑖𝑠𝑒 𝑎×𝑏 = max 𝑁𝑜𝑖𝑠𝑒 𝑏 ,𝑁𝑜𝑖𝑠𝑒 𝑎 + 𝑘

Need expensive bootstrapping after ~20 multiplications

∗
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∗

𝒂 𝒃

𝒄

𝒅depth

∗

∗

𝒂 𝒃
∗

𝒄 𝒅

parallelize log(depth)



CHET - an FHE compiler [Dathathri et al. ‘19]

Neural Net Inference CHET
LeNet5-small 3 s
LeNet5-medium 11 s
LeNet5-large 35 s
Median-liver-cancer 56 s
SqueezeNet-CIFAR 165 s

140 s
130 s

90 s

51 s

11 s

Jan-00 Jan-00 Jan-00 Jan-00 Jan-00 Jan-00

922 s



FHE ProgramsCHET Runtime

FHE Libraries

Compiling Tensor Programs for FHE libraries
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SEAL

FPGA

CHET Compiler

Tensor Programs

Automation and optimizations

HEAAN

FHE-optimized tensor kernels

FHE libraries for integer/fixed-point arithmetic

GPUCPU



Encryption Parameters

Ciphertext is a high-degree polynomial  

data = 𝑎b ⋅ 𝑥b + 𝑎bd* ⋅ 𝑥bd* + ⋯𝑎* ⋅ 𝑥 + 𝑎f

𝑁: degree of the polynomial
𝑄: modulus of the coefficients



Encryption Parameters
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Depends on circuit depth

FHE standard

𝑁: degree of the polynomial
𝑄: modulus of the coefficients



Performing Fixed Points with Scaling Factors

11 = 1.1

scale = 10

22 = 2.2

scale = 10

242

scale = 100

= 2.42

Modulus growth limits depth of circuits



Rescaling operation in CKKS ‘16

11 = 1.1

scale = 10

22 = 2.2

scale = 10

242

scale = 100

= 2.42

rescale
by 10

24

scale = 10

= 2.4

Compiler needs to insert 
rescale operations effectively



But, CKKS is approximate

11 = 1.1

scale = 10

22 = 2.2

scale = 10

254

scale = 100

= 2.42 + 𝝐

rescale
by 10

25

scale = 10

= 2.5



Solution: inflate scale

110 = 1.1

scale = 100

220 = 2.2

scale = 100

24212

scale = 10000

= 2.42 + 𝝐

rescale
by 1000

24

scale = 10

= 2.4

Compiler needs to manage
precision and error
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FHE Packing

Pack many plaintext scalars into single ciphertext vector

○ Fixed width of N/2 (N is 210 or larger)
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FHE Vectorization

● Limited set of SIMD instructions:

○ Element-wise addition

○ Element-wise subtraction

○ Element-wise multiplication

○ Rescale (all elements)

○ Rotation

● Random access of a vector 
element not supported
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11 22 33 44 55 66 0 0

22 44 66 88 110 132 0 0

V = V ⋅ 𝟐

𝑽

132 0 0 22 44 66 88 110

V = 𝑹𝒐𝒕(𝑽, 𝟑)

V = V ⋅ 𝑴𝒂𝒔𝒌

132 0 0 0 0 0 0 0



Example of Matrix Multiplication: C = A x B

32

𝒂𝟏𝟏 0 𝒂𝟏𝟐 0 𝒂𝟐𝟏 0 𝒂𝟐𝟐 0

𝒂𝟏𝟏 0 𝒂𝟏𝟐 0 𝒂𝟐𝟏 0 𝒂𝟐𝟐0

𝒂𝟏𝟏 𝒂𝟏𝟐 𝒂𝟐𝟏 𝒂𝟐𝟐𝒂𝟏𝟏 𝒂𝟏𝟐 𝒂𝟐𝟏 𝒂𝟐𝟐

𝒂𝟏𝟏 𝒂𝟏𝟐

𝒂𝟐𝟏 𝒂𝟐𝟐

𝒃𝟏𝟏 𝒃𝟏𝟐 𝒃𝟐𝟏 𝒃𝟐𝟐 0 0 0 0

0 0 0 𝒃𝟏𝟏 𝒃𝟏𝟐 𝒃𝟐𝟏 𝒃𝟐𝟐0

𝒃𝟏𝟏 𝒃𝟐𝟏 𝒃𝟏𝟏 𝒃𝟐𝟏𝒃𝟏𝟐 𝒃𝟐𝟐 𝒃𝟏𝟐 𝒃𝟐𝟐

𝒃𝟏𝟏 𝒃𝟏𝟐

𝒃𝟐𝟏 𝒃𝟐𝟐

𝑨t = 𝑹𝒐𝒕(𝑨, 𝟏)

𝑨tt = 𝑨 +𝑨′

𝑩t = 𝑹𝒐𝒕(𝑩, 𝟒)

𝑩tt = 𝑩+𝑩′

𝑨 𝑩



Example of Matrix Multiplication: C = A x B
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𝒂𝟏𝟏 𝒂𝟏𝟐 𝒂𝟐𝟏 𝒂𝟐𝟐𝒂𝟏𝟏 𝒂𝟏𝟐 𝒂𝟐𝟏 𝒂𝟐𝟐 𝒃𝟏𝟏 𝒃𝟐𝟏 𝒃𝟏𝟏 𝒃𝟐𝟏𝒃𝟏𝟐 𝒃𝟐𝟐 𝒃𝟏𝟐 𝒃𝟐𝟐

𝒄𝟏𝟏𝟏 𝒄𝟏𝟐𝟏 𝒄𝟐𝟏𝟏 𝒄𝟐𝟐𝟏𝒄𝟏𝟏𝟐 𝒄𝟏𝟐𝟐 𝒄𝟐𝟏𝟐 𝒄𝟐𝟐𝟐

𝒄𝟏𝟏𝟏𝒄𝟏𝟐𝟏 𝒄𝟐𝟏𝟏 𝒄𝟐𝟐𝟏 𝒄𝟏𝟏𝟐𝒄𝟏𝟐𝟐 𝒄𝟐𝟏𝟐 𝒄𝟐𝟐𝟐

𝒄𝟏𝟏 ## 𝒄𝟐𝟏 ##𝒄𝟏𝟐 ## 𝒄𝟐𝟐 ##

𝒄𝟏𝟏 0 𝒄𝟐𝟏 0𝒄𝟏𝟐 0 𝒄𝟐𝟐 0

𝑪t = 𝑨tt ⋅ 𝑩′′

𝑹𝒐𝒕(𝑪t, 𝟔)

𝑪tt = 𝑪t + 𝑹𝒐𝒕(𝑪t, 𝟔)

𝑪 = 𝑪tt ⋅ 𝑴𝒂𝒔𝒌

CHET chooses 
data layouts

automatically

𝒂𝟏𝟏 0 𝒂𝟏𝟐 0 𝒂𝟐𝟏 0 𝒂𝟐𝟐 0 𝒃𝟏𝟏 𝒃𝟏𝟐 𝒃𝟐𝟏 𝒃𝟐𝟐 0 0 0 0



Mapping Tensors to Vector of Vectors
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There are many ways 
to layout tensors into 
vectors, with 
different tradeoffs

H

W

C

0
1
2
3

0
2

1
3

HW (Height-Width) layout:
• Easier convolutions due to channels being aligned
• Wasted space

CHW (Channel-Height-Width) layout:
• More efficient space usage
• Convolutions require more rotations



Data Layout Selection

● Search space: explore possible data layouts 

● Cost estimation: estimate cost of each search point

● Pick the best-performing one
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Data Layout Selection: Search Space

● Search space is exponential

○ 2 choices per tensor operation: HW or CHW

● Prune search space: use domain knowledge 
-> limits to only 4 choices for the circuit

○ Convolution faster in HW while rest faster in CHW

○ Matrix multiplication faster if output is in CHW

36

Convolution

Activation

Pooling

Matrix Mult.

HW or CHW?

HW or CHW?

HW or CHW?

HW or CHW?



Data Layout Selection: Cost Estimation

● Cost model for FHE primitives:

○ Asymptotic complexity (specific to FHE scheme)

○ Microbenchmarking to determine constants

● Cost of a circuit: sum the costs for all operations
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● FHE-compatible Deep Neural Networks (DNN):

● Evaluation:

○ Latency of image inference (batch size = 1)

Experimental Setup

● Systems:

○ Hand-written HEAAN 

○ CHET with HEAAN

○ CHET with SEAL

● Machine:
○ Dual-socket Intel Xeon E5-2667v3

○ 16 cores 

○ 224 GB of memory
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DNN Dataset # Layers # FP 
ops 
(M)

Accurac
y

LeNet-5-small MNIST 8 0.2 98.5%
LeNet-5-medium MNIST 8 5.8 99.0%
LeNet-5-large MNIST 8 8.7 99.3%
Industrial - 13 - -
SqueezeNet-CIFAR CIFAR-10 19 37.8 81.5%



CHET outperforms hand-written implementations
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Best data layout depends on FHE library and DNN
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FHE Compiler

DNN Inference

SEAL

Generalizing CHET (ongoing work)

41

FPGA

CHET Compiler

GPUCPU

ONNX/TVM/MLIR

FHE Programs

C++/ONNX Python

Image Processing

Python

Statistical ML



Making Computations FHE compatible

• Cannot evaluate non-polynomial operations
• ReLU
• Max pooling

• Options:
1. Replace with polynomial approximation
2. Combine Boolean and arithmetic schemes
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Conclusions

• Cryptographic computation is a “PL + HPC + Systems” problem

• Currently at 8086 speeds but 2-3x already possible
• Better encryption schemes, compilers, runtime systems, HW support

• Interesting applications possible at current speeds

• Many PL challenges still open


