
Cryptographic Computations
Need Compilers

Madan Musuvathi
Microsoft Research

Microsoft's Commitment to Research

~1000 People and growing!
ca. 650 researchers
ca. 350 engineers, testers, designers, PMs

Labs around the World
Bangalore, Beijing, Cambridge (MA), Cambridge (UK), New York, Redmond

Sponsor of Conferences and Academic Research

Biggest PhD Internship Program

Our Mission & Culture (est. 1991)

Programming Languages
Programming Models

HPC, Compilers, Systems

Verified Programming

Software Engineering
Reliability Tools

Productivity

SE4AI & AI4SE

Automated Reasoning
Foundations

Theorem Proving

Research in
Software

Engineering

Research in Software Engineering (RiSE)

RiSE Hires 2019

Daniel Selsam

Ph.D. Stanford University
Formal Methods & Machine Learning

Denae Ford Robinson

Ph.D. NC State University
HCI & Software Engineering

Olli Saarikivi

Ph.D. Aalto University
Compiler Systems

Teddy Seyed

Ph.D. University of Calgary
HCI & Embedded Systems

Cryptographic Computations
enable

Privacy Preserving Applications

Fully Homomorphic Encryption (FHE)
Client Server

data datadata

answeransweranswer

FHE
Compute

Encryption key never leaves the client

Simple trust model: trust yourself, the math,
the enc. library, but no one else

Secure Multi-Party Computation (Secure MPC)
Client Server

𝑥 𝑦Protocol 𝚷

𝐹(𝑥, 𝑦)

Nothing is leaked except the output

Semi-Honest Threat Model

● Hardware and software execute requested computation faithfully

● Hardware and software are curious about the data

● Client or user data must remain confidential

11

Programming Cryptographic Computations is Hard

• Involves low-level circuit programming
• Need different schemes for Boolean vs arithmetic operations
• Requires cryptographic expertise
• To guarantee correctness, security, and efficiency

EzPC: Compiler Framework for
Secure MPC

Divya Gupta, Nishanth Chandran, Aseem Rastogi, Rahul Sharma
MSR India

13

Client Server

𝑥 𝑦Protocol 𝚷

𝐹(𝑥, 𝑦)

Secure Multi-Party Computation (Secure MPC)
Client Server

𝑥 𝑦

𝐹(𝑥, 𝑦)

𝑥 − 𝑥) 𝑥) 𝑦 − 𝑦) 𝑦)

𝐹 𝐹

𝐹* 𝐹+

EzPC Compilation
Function: 𝑤-𝑥 > 𝑏

• Base types and array types
• Mathematical operators (+, *, >, &, >>, ….)
• Statements for assignments, array read/write,

bounded for loops and if condition

uint w[30]	=	input1();
uint x[30]	=	input2();
uint b	=	input1();

uint acc =	0;
for i in [0:30]	{
acc =	acc +	(w[i]	*	x[i]);	}

Output2((acc >	b	?	1	:	0);				

15

EzPC Compilation
Function: 𝑤-𝑥 > 𝑏

uint w[30]	=	input1();
uint x[30]	=	input2();
uint b	=	input1();

uint acc =	0;
for i in [0:30]	{
acc =	acc +	(w[i]	*	x[i]);	}

Output2((acc >	b	?	1	:	0);				

16

• Assign variables to Boolean or Arithmetic
• Automatically insert conversion operators
• Use cryptographic cost model to optimize

compilation

Allows computation on encrypted data

𝑚 ≜ 𝐸𝑛𝑐 𝑚

𝑎 ⊕ 𝑏 = 𝑎 + 𝑏

𝑎 ⊗ 𝑏 = 𝑎×𝑏

Fully-Homomorphic Encryption (FHE)

1978

Proposal of FHE [RAD]

2009

First FHE scheme [Gentry]

2012

Integer schemes [BGV, BFV]

2016

Efficient fixed-points [CKKS]

FHE timeline

Performance overhead of FHE over unencrypted

19

1.0E+00

1.0E+02

1.0E+04

1.0E+06

1.0E+08

1.0E+10

1.0E+12

1 2 3 4 5 6 7

Need better
encryption schemes,

compilers,
runtimes, and

hardware support

Sl
ow

do
w

n

Computation is slow: ~50 ms per multiplication

Very large SIMD vector widths: ~16K
can operate at 8086 speeds if you can utilize the parallelism

No branching
a bug and a feature

Tradeoff between correctness, security, message bloat, and performance
requires setting parameters correctly

Different encryption schemes provide different functionalities
arithmetic, Boolean logic, table lookups, …

Bootstrap periodically to reduce noise

FHE programming challenges

Noise growth challenge

Noise growth proportional to multiplicative depth
𝑁𝑜𝑖𝑠𝑒 𝑎×𝑏 = max 𝑁𝑜𝑖𝑠𝑒 𝑏 ,𝑁𝑜𝑖𝑠𝑒 𝑎 + 𝑘

Need expensive bootstrapping after ~20 multiplications

∗

∗

∗

𝒂 𝒃

𝒄

𝒅depth

∗

∗

𝒂 𝒃
∗

𝒄 𝒅

parallelize log(depth)

CHET - an FHE compiler [Dathathri et al. ‘19]

Neural Net Inference CHET
LeNet5-small 3 s
LeNet5-medium 11 s
LeNet5-large 35 s
Median-liver-cancer 56 s
SqueezeNet-CIFAR 165 s

140 s
130 s

90 s

51 s

11 s

Jan-00 Jan-00 Jan-00 Jan-00 Jan-00 Jan-00

922 s

FHE ProgramsCHET Runtime

FHE Libraries

Compiling Tensor Programs for FHE libraries

23

SEAL

FPGA

CHET Compiler

Tensor Programs

Automation and optimizations

HEAAN

FHE-optimized tensor kernels

FHE libraries for integer/fixed-point arithmetic

GPUCPU

Encryption Parameters

Ciphertext is a high-degree polynomial

data = 𝑎b ⋅ 𝑥b + 𝑎bd* ⋅ 𝑥bd* + ⋯𝑎* ⋅ 𝑥 + 𝑎f

𝑁: degree of the polynomial
𝑄: modulus of the coefficients

Encryption Parameters

25

Q

𝑁

Correct
Incorrect

Insecu
re

Se
cu

re

Bette
r p

erfo
rm

an
ce

Correct and
Secure

Depends on circuit depth

FHE standard

𝑁: degree of the polynomial
𝑄: modulus of the coefficients

Performing Fixed Points with Scaling Factors

11 = 1.1

scale = 10

22 = 2.2

scale = 10

242

scale = 100

= 2.42

Modulus growth limits depth of circuits

Rescaling operation in CKKS ‘16

11 = 1.1

scale = 10

22 = 2.2

scale = 10

242

scale = 100

= 2.42

rescale
by 10

24

scale = 10

= 2.4

Compiler needs to insert
rescale operations effectively

But, CKKS is approximate

11 = 1.1

scale = 10

22 = 2.2

scale = 10

254

scale = 100

= 2.42 + 𝝐

rescale
by 10

25

scale = 10

= 2.5

Solution: inflate scale

110 = 1.1

scale = 100

220 = 2.2

scale = 100

24212

scale = 10000

= 2.42 + 𝝐

rescale
by 1000

24

scale = 10

= 2.4

Compiler needs to manage
precision and error

044

FHE Packing

Pack many plaintext scalars into single ciphertext vector

○ Fixed width of N/2 (N is 210 or larger)

30

11

11 22 33 44

22 33 55 66 0

55 66

FHE Vectorization

● Limited set of SIMD instructions:

○ Element-wise addition

○ Element-wise subtraction

○ Element-wise multiplication

○ Rescale (all elements)

○ Rotation

● Random access of a vector
element not supported

31

11 22 33 44 55 66 0 0

22 44 66 88 110 132 0 0

V = V ⋅ 𝟐

𝑽

132 0 0 22 44 66 88 110

V = 𝑹𝒐𝒕(𝑽, 𝟑)

V = V ⋅ 𝑴𝒂𝒔𝒌

132 0 0 0 0 0 0 0

Example of Matrix Multiplication: C = A x B

32

𝒂𝟏𝟏 0 𝒂𝟏𝟐 0 𝒂𝟐𝟏 0 𝒂𝟐𝟐 0

𝒂𝟏𝟏 0 𝒂𝟏𝟐 0 𝒂𝟐𝟏 0 𝒂𝟐𝟐0

𝒂𝟏𝟏 𝒂𝟏𝟐 𝒂𝟐𝟏 𝒂𝟐𝟐𝒂𝟏𝟏 𝒂𝟏𝟐 𝒂𝟐𝟏 𝒂𝟐𝟐

𝒂𝟏𝟏 𝒂𝟏𝟐

𝒂𝟐𝟏 𝒂𝟐𝟐

𝒃𝟏𝟏 𝒃𝟏𝟐 𝒃𝟐𝟏 𝒃𝟐𝟐 0 0 0 0

0 0 0 𝒃𝟏𝟏 𝒃𝟏𝟐 𝒃𝟐𝟏 𝒃𝟐𝟐0

𝒃𝟏𝟏 𝒃𝟐𝟏 𝒃𝟏𝟏 𝒃𝟐𝟏𝒃𝟏𝟐 𝒃𝟐𝟐 𝒃𝟏𝟐 𝒃𝟐𝟐

𝒃𝟏𝟏 𝒃𝟏𝟐

𝒃𝟐𝟏 𝒃𝟐𝟐

𝑨t = 𝑹𝒐𝒕(𝑨, 𝟏)

𝑨tt = 𝑨 +𝑨′

𝑩t = 𝑹𝒐𝒕(𝑩, 𝟒)

𝑩tt = 𝑩+𝑩′

𝑨 𝑩

Example of Matrix Multiplication: C = A x B

33

𝒂𝟏𝟏 𝒂𝟏𝟐 𝒂𝟐𝟏 𝒂𝟐𝟐𝒂𝟏𝟏 𝒂𝟏𝟐 𝒂𝟐𝟏 𝒂𝟐𝟐 𝒃𝟏𝟏 𝒃𝟐𝟏 𝒃𝟏𝟏 𝒃𝟐𝟏𝒃𝟏𝟐 𝒃𝟐𝟐 𝒃𝟏𝟐 𝒃𝟐𝟐

𝒄𝟏𝟏𝟏 𝒄𝟏𝟐𝟏 𝒄𝟐𝟏𝟏 𝒄𝟐𝟐𝟏𝒄𝟏𝟏𝟐 𝒄𝟏𝟐𝟐 𝒄𝟐𝟏𝟐 𝒄𝟐𝟐𝟐

𝒄𝟏𝟏𝟏𝒄𝟏𝟐𝟏 𝒄𝟐𝟏𝟏 𝒄𝟐𝟐𝟏 𝒄𝟏𝟏𝟐𝒄𝟏𝟐𝟐 𝒄𝟐𝟏𝟐 𝒄𝟐𝟐𝟐

𝒄𝟏𝟏 ## 𝒄𝟐𝟏 ##𝒄𝟏𝟐 ## 𝒄𝟐𝟐 ##

𝒄𝟏𝟏 0 𝒄𝟐𝟏 0𝒄𝟏𝟐 0 𝒄𝟐𝟐 0

𝑪t = 𝑨tt ⋅ 𝑩′′

𝑹𝒐𝒕(𝑪t, 𝟔)

𝑪tt = 𝑪t + 𝑹𝒐𝒕(𝑪t, 𝟔)

𝑪 = 𝑪tt ⋅ 𝑴𝒂𝒔𝒌

CHET chooses
data layouts

automatically

𝒂𝟏𝟏 0 𝒂𝟏𝟐 0 𝒂𝟐𝟏 0 𝒂𝟐𝟐 0 𝒃𝟏𝟏 𝒃𝟏𝟐 𝒃𝟐𝟏 𝒃𝟐𝟐 0 0 0 0

Mapping Tensors to Vector of Vectors

34

There are many ways
to layout tensors into
vectors, with
different tradeoffs

H

W

C

0
1
2
3

0
2

1
3

HW (Height-Width) layout:
• Easier convolutions due to channels being aligned
• Wasted space

CHW (Channel-Height-Width) layout:
• More efficient space usage
• Convolutions require more rotations

Data Layout Selection

● Search space: explore possible data layouts

● Cost estimation: estimate cost of each search point

● Pick the best-performing one

35

Data Layout Selection: Search Space

● Search space is exponential

○ 2 choices per tensor operation: HW or CHW

● Prune search space: use domain knowledge
-> limits to only 4 choices for the circuit

○ Convolution faster in HW while rest faster in CHW

○ Matrix multiplication faster if output is in CHW

36

Convolution

Activation

Pooling

Matrix Mult.

HW or CHW?

HW or CHW?

HW or CHW?

HW or CHW?

Data Layout Selection: Cost Estimation

● Cost model for FHE primitives:

○ Asymptotic complexity (specific to FHE scheme)

○ Microbenchmarking to determine constants

● Cost of a circuit: sum the costs for all operations

37

● FHE-compatible Deep Neural Networks (DNN):

● Evaluation:

○ Latency of image inference (batch size = 1)

Experimental Setup

● Systems:

○ Hand-written HEAAN

○ CHET with HEAAN

○ CHET with SEAL

● Machine:
○ Dual-socket Intel Xeon E5-2667v3

○ 16 cores

○ 224 GB of memory

38

DNN Dataset # Layers # FP
ops
(M)

Accurac
y

LeNet-5-small MNIST 8 0.2 98.5%
LeNet-5-medium MNIST 8 5.8 99.0%
LeNet-5-large MNIST 8 8.7 99.3%
Industrial - 13 - -
SqueezeNet-CIFAR CIFAR-10 19 37.8 81.5%

CHET outperforms hand-written implementations

39

0

0.5

1

1.5

2

2.5

3

3.5

1 2 3 4 5

CHET-SEAL

Series1 Series2 Series3 Series4

0

2

4

6

8

10

12

14

1 2 3 4 5

CHET-HEAAN

Series1 Series2 Series3 Series4

Best data layout depends on FHE library and DNN

40

Sl
ow

do
w

n

Sl
ow

do
w

n

FHE Compiler

DNN Inference

SEAL

Generalizing CHET (ongoing work)

41

FPGA

CHET Compiler

GPUCPU

ONNX/TVM/MLIR

FHE Programs

C++/ONNX Python

Image Processing

Python

Statistical ML

Making Computations FHE compatible

• Cannot evaluate non-polynomial operations
• ReLU
• Max pooling

• Options:
1. Replace with polynomial approximation
2. Combine Boolean and arithmetic schemes

0
0.5

1
1.5

2
2.5

3

-4 -2 0 2 4

-0.5

0

0.5

1

1.5

2

2.5

3

-4 -2 0 2 4

𝑅𝑒𝐿𝑈 𝑥

𝑥+ + 𝑎 ⋅ 𝑥

Conclusions

• Cryptographic computation is a “PL + HPC + Systems” problem

• Currently at 8086 speeds but 2-3x already possible
• Better encryption schemes, compilers, runtime systems, HW support

• Interesting applications possible at current speeds

• Many PL challenges still open

