Testing the SLATE Linear Algebra Library

Mark Gates

Innovative Computing Laboratory, University of Tennessee, Knoxville

Software Testing for Scientific Computing in HPC BoF
SLATE: Software for Linear Algebra Targeting Exascale

• Distributed, GPU-accelerated, dense linear algebra library
 • BLAS
 • Linear systems
 • Least squares
 • Eigenvalues, SVD, Polar Decomposition

• TestSweeper framework
 • Parses command line parameters
 • Loops over parameters
 • Print output in table
 • Testing & benchmarking, MPI aware
Scope of testing

• Approximately 70 high-level routines to test
 • **BLAS**: gemm, he/symm, he/syrk, he/syr2k, trmm, trsm, trtrm
 • **Auxiliary**: add, scale, scale_row_col, set, ge/he/sy/trnorm
 • **Linear solvers**: {gb, ge, pb, po, he}{sv, trf, trs, tri, condest} + variants
 • **Least squares**: gels, qr, mqr, lq, mlq, cholqr
 • Eig, generalized eig, svd, polar

• Most have backward error formulas; some require reference solution
• 4+ precisions
• 4+ platforms
Explosion of Combinations

- Each has ≈ 10 parameters to loop over
 - Upper / lower, transpose, dimensions (m, n, k), block size, MPI grid (p, q), OpenMP threads, target (CPU, GPU), ...
- “Quick” check runs 4500 tests x 4 platforms
 - Small matrices
 - CPU, CUDA, ROCm, SYCL
- Need large matrices to stress implementation
- MAGMA’s full test suite can run > 24 hours
Platforms
Platforms

- GitHub CI
 - Test on in-house servers or cloud
 - GNU or Intel compilers, MPI
 - OpenBLAS, Intel MKL
Platforms

• GitHub CI
 • Test on in-house servers or cloud
 • GNU or Intel compilers, MPI
 • OpenBLAS, Intel MKL

• Build Platforms
Platforms

• GitHub CI
 • Test on in-house servers or cloud
 • GNU or Intel compilers, MPI
 • OpenBLAS, Intel MKL

• Build Platforms

• Target: HPC platforms
 • Summit: IBM ESSL, MPI, CUDA
 • Frontier: Cray compilers, LibSci, GPU-aware MPI, ROCm
 • Aurora: Intel compilers, SYCL
More Challenges

• False or unrelated failures
 • Random data yields ill-conditioned matrix ⇒ write better matrix generator
 • Software stack reconfigured ⇒ containers isolate changes
 • Contention with users ⇒ scheduler like slurm or move to cloud
 • Error slighty above tolerance: $2.5e-15 > 2.2e-15 = 10\varepsilon$ FAILED

• Solving these distracts from PR