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Behavioral/Cognitive

Stimulus Context and Reward Contingency Induce
Behavioral Adaptation in a Rodent Tactile Detection Task

Christian Waiblinger, Caroline M. Wu, Michael F. Bolus, “Peter Y. Borden, and ““Garrett B. Stanley
Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30332

Behavioral adaptation is a prerequisite for survival in a constantly changing sensory environment, but the underlying strategies and relevant
variables driving adaptive behavior are not well understood. Many learning models and neural theories consider probabilistic computations as
an efficient way to solve a variety of tasks, especially if uncertainty is involved. Although this suggests a possible role for probabilistic inference
and expectation in adaptive behaviors, there is little if any evidence of this relationship experimentally. Here, we investigated adaptive behavior
in the rat model by using a well controlled behavioral paradigm within a psychophysical framework to predict and quantify changes in perfor-
mance of animals trained on a simple whisker-based detection task. The sensory environment of the task was changed by transforming the
probabilistic distribution of whisker deflection amplitudes systematically while measuring the animal’s detection performance and correspond-
ing rate of accumulated reward. We show that the psychometric function deviates significantly and reversibly depending on the probabilistic
distribution of stimuli. This change in performance relates to accumulating a constant reward count across trials, yet it is exempt from changes
in reward volume. Our simple model of reward accumulation captures the observed change in psychometric sensitivity and predicts a strategy
seeking to maintain reward expectation across trials in the face of the changing stimulus distribution. We conclude that rats are able maintain a
constant payoff under changing sensory conditions by flexibly adjusting their behavioral strategy. Our findings suggest the existence of an

internal probabilistic model that facilitates behavioral adaptation when sensory demands change.
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Significance Statement

The strategy animals use to deal with a complex and ever-changing world is a key to understanding natural behavior. This study
provides evidence that rodent behavioral performance is highly flexible in the face of a changing stimulus distribution, consistent

with a strategy to maintain a desired accumulation of reward.

Introduction

Our decisions in everyday situations are governed by sensory
stimuli but also, and most importantly, by our experience and by
a constantly changing sensory environment. How do we adapt to
such contextual changes? What is our strategy to deal with a
dynamically changing environment? In the last decade, there
have been major advances toward answering this question by
studying perceptual decision making across species and asking
how and to what degree neuronal activity reflects behavioral
choice and how sensory information is transformed into adaptive
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action (Romo and Salinas, 2003; Gold and Shadlen, 2007; Nien-
borg and Cumming, 2009). An important finding is that behav-
ioral performance in psychophysical experiments is often not
determined by sensory processes alone but by a wide range of
biasing factors, among them prior probabilities, reward payoff,
changing stimulus—action associations, and trial history (Busse et
al., 2011; Stiittgen et al., 2013; Jaramillo et al., 2014; Akrami et al.,
2018; Waiblinger et al., 2018), potentially pointing to a complex,
dynamic behavioral strategy reliant on a continuous interplay
between these factors. Claims about neuronal coding schemes
therefore depend crucially on behavioral context and a precise
assessment of the observer’s active task strategy. By considering
these dynamic cognitive processes, much of the variability ob-
served in behavior could be much more predictable compared
with using simplified psychophysical approaches that do not take
the contextual elements into account. Although there exist a va-
riety of useful computational models to explain choice biases or
contextual dependencies in human and animal psychophysical
datasets (Nassar et al., 2010; Friind et al., 2011, 2014; Wilson et al.,
2013; Braun et al., 2018), a definitive understanding of behavior
within a dynamic framework does not yet exist.

Here, we directly investigate behavioral strategies in the face of
a dynamically changing sensory environment, using the rodent
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vibrissa pathway as a model system. Specifically, we challenge
head-fixed rats in a Go/No-Go detection task with a variable
whisker deflection amplitude drawn from a controlled but prob-
abilistic distribution of amplitudes, which varies across sessions.
In response to changing stimulus distribution, we observe a dy-
namic behavioral strategy reflected in a shift in psychometric
sensitivity that is qualitatively consistent with the animal main-
taining the expected accumulated reward in the face of a changing
environment. We quantitatively challenge this hypothesis within
a simple model framework of reward accumulation to predict
and capture systematic changes in the performance of expert rats
in a range of experiments with changing stimulus and reward
contingencies. The observed change in psychometric sensitivity is
largely predicted by a strategy seeking to maintain reward expec-
tation in the face of a changing stimulus distribution and revers-
ibly persists in the face of a range of transformations of the
stimulus distribution. Finally, analysis of psychometric sensitiv-
ity within sessions reveals an asymmetric shift in sensitivity on
even shorter time scales, suggestive of a dynamic strategy based
on an internal model of reward accumulation. A direct manipu-
lation of the reward feedback thereby reveals that the number of
past rewarded trials not the volume corresponds with task en-
gagement. Together, the results here provide a simple predictive
framework for adaptive reward-based behaviors in a changing
sensory environment.

Materials and Methods

Animals, surgery, and general procedures for behavioral testing

All experimental and surgical procedures were approved by the Georgia
Institute of Technology Institutional Animal Care and Use Committee
and were in agreement with guidelines established by the National Insti-
tutes of Health. Subjects were seven female Sprague Dawley rats aged
12-16 weeks at time of implantation. The basic procedures of head-cap
surgery, habituation to head fixation, and behavioral training exactly
followed the ones published in a technical review (Schwarz et al., 2010)
and more recent studies (Waiblinger et al., 2015, 2018). In the following
text, only procedures pertaining to the specific paradigm established here
are described in detail.

Oral antibiotics (Baytril; Bayer injectable solution 2.27%, 20 ml) were
provided for 1 d before surgery and 1 week postoperatively. The animals
were anesthetized using isofluorane and a head cap for head fixation was
implanted. The wound was treated with antibiotic ointment and sutured.
Analgesia and warmth were provided after surgery. Rats were allowed to
recover for atleast 10 d before habituation training. Subjects were housed
together with a maximum number of two in one group cage and kept
under a 12/12 h inverted light/dark cycle. During successive days of be-
havioral testing, water intake was restricted to the experimental sessions
in which animals were given the opportunity to earn water to satiety.
Testing was paused and water was available ad libitum for 2 d a week.
Body weight was monitored daily and was typically observed to increase
during training. If the body weight dropped for more than ~10 g due to
a higher task difficulty, supplementary water was delivered outside of
training sessions to keep the animal’s weight up. The first step of behav-
ioral training was systematic habituation to head-fixation lasting for ~2
weeks. Once rats were trained on the behavioral task, one or two exper-
iments were usually conducted per day, comprising 100-200 trials. Dur-
ing behavioral testing, a constant auditory white background noise (70
dB) was produced by an arbitrary waveform generator to mask any
sound emission of the galvo-motor-based whisker actuator.

Whisker stimulation

For whisker stimulation, a galvo-motor (galvanometer optical scanner
model 6210H; Cambridge Technology) as described in Chagas et al.
(2013) was used. The rotating arm of the galvo-motor contacted a single
whisker on the right of the rat’s face at 5 mm (1 mm tolerance) distance
from the skin and thus directly engaged the proximal whisker shaft,
largely overriding bioelastic whisker properties. All of the remaining
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whiskers were trimmed to prevent them from being touched by the ro-
tating arm. Voltage commands for the actuator were programmed in
MATLAB and Simulink (version 2015b; The MathWorks). A stimulus
consisted of a single event: a sinusoidal pulse (half period of a 100 Hz sine
wave, starting at one minimum and ending at the next maximum). The
pulse amplitudes used (A = [0, 0.25, 1, 4, 16]° or maximal velocities,
respectively: V= [0, 78.49,313.95, 1255.81, 5023.24]°/s) were well within
the range reported for frictional slips observed in natural whisker move-
ment (Ritt et al., 2008; Wolfe et al., 2008).

Behavioral paradigm and training

All seven rats were trained on a standard Go/No-Go detection task using
a similar protocol as described before (Stiittgen et al., 2006; Ollerenshaw
etal.,2012,2014). In this task, the whisker is deflected at intervals of 4—10
s (flat probability distribution) with a single pulse (detection target). A
trial was categorized a “hit” if the animal generated the “Go” indicator
response, a lick at a water spout within 1000 ms of target onset. If no lick
was emitted, the trial counted as a “miss.” In addition, catch trials were
included in which no deflection of the whisker occurred (A = 0°) and a
trial was categorized as a correct rejection if licking was withheld (No-
Go). However, a trial was categorized as a false alarm if random licks
occurred within 1000 ms of catch onset. Premature licking in a 2 s period
before the stimulus was mildly punished by resetting time (time-out) and
starting a new intertrial interval of 4—10 s duration drawn at random
from a flat probability distribution. Note that these trial types were ex-
cluded from the main psychometric data analysis because they can occur
with a different likelihood as a particular stimulus or catch trial. How-
ever, we report these trial types separately and refer to them as “impulsive
licks” in the rest of the manuscript.

During the first training phase, a single pulse with fixed amplitude was
presented interspersed by catch trials (Pg;,, = 0.8, P ., = 0.2). Imme-
diately following stimulus offset, a droplet of water became available at
the waterspout to condition the animal’s lick response thereby shaping
the stimulus—reward association. Once subjects showed stable and im-
mediate consumption behavior (usually within a few sessions), water was
only delivered after an indicator lick at the spout within 1000 ms, turning
the task into an operant conditioning paradigm in which the response is
only reinforced by reward if it is correctly emitted after the stimulus.

To assess differences in learning based on stimulus amplitude at this
stage of training, we separated animals into two groups: Group 1 (rats
1-3) receiving only high-amplitude stimuli (A = [0 16]°) and Group 2
(rats 4 and 5) receiving only small-amplitude stimuli (A = [0 4]°). To
assess learning, training was conducted without manual interference by
the experimenter and with equal conditions across sessions from here on.
The learning curve consisted of detection indices across training sessions
each calculated by subtracting the false alarm rate from the hit rate for a
given session (D; = Pyyp — Ppa). A criterion of 0.75 was used to deter-
mine expert level. After expert level was achieved, the psychometric curve
was measured using the method of constant stimuli, which entails the
presentation of repeated stimulus blocks containing multiple stimulus
amplitudes. The sequence of stimuli within a block was pseudo-random
(i.e., each stimulus and catch was presented once in shuffled order and
then repeated). The experimenter aborted a session when the animal
stopped working on the task; that is, when it did not generate lick re-
sponses for an entire stimulus block, including the highest-amplitude
stimulus.

The main experiments of this study were performed using different
stimulus and reward conditions in a within-subject design. Each experi-
mental condition consisted of 8—10 sessions performed over ~5 d. Each
animal performed 1-2 sessions per day with a minimal break of 3 h in
between. Stimulus or reward parameters changed once an animal had
completed an experimental condition. The different animal groups and
experimental conditions are described in detail in the following section
(see also Fig. 1).

Experiment 1. Once our first group of rats (rats 1-3) had learned the
task, psychometric tests were conducted with a manipulation of the stim-
ulus distribution range. In a given session, the sequence of trials consisted
of repeated stimulus blocks, each block containing multiple stimuli and
catch trial once in shuffled order. Therefore, each stimulus occurred with
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the same probability (i.e., a uniform distribution). In the “high-range”
condition, three stimulus amplitudes plus catch trial were used (A = [0,
1, 4, 16]°) and presented in multiple successive sessions (sessions 1-8).
Following this (sessions 9-16), three new stimulus amplitudes were pre-
sented (A = [0, 0.25, 1, 4]°), forming the low-range condition. Both
stimulus distributions shared two of the three stimulus amplitudes; how-
ever, the largest stimulus amplitude of the high-range condition (16°)
was not part of the low range and vice versa, the smallest amplitude of the
low-range condition (0.25°) was not part of the high range. To test the
reversibility of potential behavioral changes, another high-range condi-
tion was presented at the end (sessions 17-24). For the second group of
rats (rats 4 and 5), the order of experiments was reversed; that is, the first
psychometric curve was measured by presenting the low-range condition
first (A = [0, 0.25, 1, 4]°) before switching to the high-range condition
(A =10,1,4,16]°) and then again back to the low range. A third group of
rats (rats 6 and 7) served as a control group and underwent experiments
without any changes to the stimulus distribution range; that is, the psy-
chometric curves were measured with exactly the same set of stimuli
throughout (sessions 1-24).

Experiment 2. In the next experiment, the same animal groups were
used as before, but this time the stimulus distribution range was fixed
while the relative probabilities were changed (i.e., no longer uniform).
Now, all four amplitudes plus a catch trial (A = [0, 0.25, 1, 4, 16]°) were
used for both the “big” and “small” conditions, but in the big condition,
the two stimuli with large amplitudes were presented with a higher prob-
ability than the two small amplitudes (Py;, > Py, P [4, 16]° = 0.36, P
[0.25, 1]° = 0.09). In the small condition, the order of stimulus proba-
bilities was reversed; that is, the two stimuli with small amplitudes were
presented with a higher probability than the two large amplitudes (Py,;, <
P P [4,16]° = 0.09, P [0.25, 1]° = 0.36). The probability of a catch
trial always remained the same for all conditions (P, = 0.1). The
sequence of manipulations was the same as in Experiment 1: rats 1-3
started with the big condition (sessions 1-8) and then underwent shifts
to small (sessions 9—17) and back to the big condition (sessions 17-24),
whereas the order of manipulations was reversed for rats 4-5. In all of the
above described conditions, the reward size was kept constant through-
out; that is, each correctly detected stimulus (hit) resulted in a water
reward of identical volume (volume per trial = 0.09 ml).

Experiment 3. In a subset of rats (rats 1-3), the distribution range and
probability of stimuli was kept constant throughout all conditions (A =
[0,1,4,16]° p = 0.25), but the reward size was varied systematically; that
is, the drop size was small (0.04 ml), medium (0.09 ml), or big (0.18 ml)
in a given hit trial. The reward volume changed only between experimen-
tal conditions, not within sessions. The above-described high-range dis-
tribution served as baseline and was performed first because it already
used the medium reward size. In the following sessions, the stimuli were
kept constant but the drop size was decreased by half and then increased
to double the volume. Note that not all animals of this group experienced
all reward conditions (rat 1: half and medium only, rat 2-3: half, me-

dium, and big).

Data analysis and statistics

Psychometric data were assessed as response probabilities averaged
across sessions within a given stimulus or reward condition. This was
done separately for each of the seven animals. Psychometric curves were
fit using Psignifit (Wichmann and Hill, 2001a,b; Friind et al., 2011).
Briefly, a constrained maximum likelihood method was used to fit a
modified logistic function with four parameters: « (the displacement of
the curve), B3 (related to the inverse of slope of the curve), y (the lower
asymptote or guess rate), and A (the higher asymptote or lapse rate) as
follows:

1

PGOs) = v+ (1 =y = N Toe)

§§ — A
B

Response thresholds were calculated from the average psychometric
function for a given experimental condition using Psignifit. The term

z(s) =
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“response threshold” refers to the inverse of the psychometric function at
some particular performance level with respect to the stimulus dimen-
sion. Throughout this study, we use a performance level of 50% ( prob-
ability of detection = 0.5). Statistical differences between psychophysical
curves were assessed using bootstrapped estimates of 95% confidence
limits for the response thresholds provided by the Psignifit toolbox.

Reward accumulation

Let the stimulus amplitude delivered on the i'" trial be denoted as s,, the
corresponding reward as r;, and the accumulated reward for N trials as
Ry Over N trials, the expected accumulated reward is as follows:

N

E{Ry} = X, P(s) P(GO | s))r;

i=1

where P(s;) comes from the experimentally controlled stimulus distribu-
tion, P(GO s;) is the probability of a positive response (or “Go”) for the
given stimulus amplitude, and E{} denotes statistical expectation.

We considered the null hypothesis of this behavioral paradigm to be
that animals do not adapt their behavior in response to an experimentally
forced change in stimulus distribution and thus operate from the same
psychometric curve (represented as dotted curves in Figs. 2, 3,and 4). For
example, in moving from the high-range to the low-range stimulus con-
dition (see Fig. 2), this would result in a decrease in the total accumulated
reward for the same number of trials.

As an alternative hypothesis, one possible strategy that the animal
could take in response to a change in the stimulus distribution would be
to adjust behavior to maintain the same amount of accumulated reward
during a session. For example, in moving from high-range stimuli to
low-range stimuli, the accumulated reward would be assumed to be fixed
and we can determine a new set of probabilities P(GO s,) that define an
adapted psychometric function. Note that there is not a unique solution,
but one simple possibility is that the original psychometric function
maintains the same asymptotes (y and A) and false alarm rate, but is
compressed, with a decrease in response threshold and an increase in
slope to maintain the same total accumulated reward. We denote this
situation as our hypothetical psychometric function, which is repre-
sented as dashed curves in Figure 2.

As outlined above, Experiment 1 involves the high- and low-range
stimulus amplitude distributions, but both are uniform distributions, so
P(s;) is the same for all 5. As shown in Figure 3, we also conducted
experiments (Experiment 2) with nonuniform distributions. Consider,
for example, the distributions shown for the Py;, > P,,,,;; in the top panel
of Figure 3A, where the probability of the big-amplitude stimuli of 4 and
16 degrees is higher than small amplitude stimuli of 0.25 and 1 degrees.
Under the hypothesis that animals adapt their behavior to achieve the
same amount of reward when moving from this distribution to the in-
verse distribution Py, < Py, We can calculate a new psychometric
function as done above. Again, there is not a unique solution, so we chose
the simplest possibility by compressing the original psychometric func-
tion to the left so that it maintains the same asymptotes (y and A) and
false alarm rate, but allows a change in response threshold and slope to
maintain the same total accumulated reward. As before, we denote this
situation as our hypothetical psychometric function, represented as
dashed curves in Figure 3.

Finally, under the working hypothesis that the animal adjusts to main-
tain the total accumulated reward in response to changes in the stimulus
distribution, then changing the amount of reward delivered upon a hit
trial should produce predictable effects in the behavior. In a final set of
experiments (Experiment 3; see Fig. 4), we thus changed the amount of
reward delivered in a successful trial, which changes the value of r;. This
then generates predictable changes in the behavior, and thus the psycho-
metric function, in comparing the small, medium, and big rewards of
Figure 4A.

Results

We trained seven head-fixed rats using a tactile Go/No-Go
detection task (Cook and Maunsell, 2002; Stiittgen et al., 20065
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Figure 1.  Experimental strategy. A, Behavioral setup with head-fixed rat, reward port, and whisker stimulator. A single whisker was deflected in the rostrocaudal plain (R, C). B, Go/No-Go
detection task. A punctuate stimulus (10 ms) has to be detected by the rat with an indicator lick to receive reward. A Go trial is categorized as a hit (H) if the animal responds within 1 s upon stimulation
and a miss (M) if no response is emitted. Catch trials in which stimulation is absent (No-Go) are categorized as a false alarm (FA) if random licking occurs or as a correct rejection (CR) if licks are
withheld. Reward is only delivered in hit trials. Impulsive licks in a 2 s period before trial onset are mildly punished by a time-out (arrow, 4—10s). €, Conceptual behavioral framework. The animal’s
choice (Go or No-Go) is modeled as a function of the trial by trial response to a stimulus. The resulting variable zis passed through a logistic function that yields a probability for Go or No-Go responses.
Two history-dependent variables are thought to influence the behavioral response: (1) reward expectation is formed by integrating the stimulus distribution (range or probability of a particular
amplitude occurring) in a feedforward model (left gray box) and (2) the reward accumulation is integrated and leads to behavioral adjustments in a feedback model (right gray box). D, Overview of
all experiments. Experiment T manipulated the range of stimulus amplitudes; that is, the upper and lower limits (top, magenta vs green). Experiment 2 manipulated the probability of a stimulus
presentation (middle, magenta vs green). Experiment 3 manipulated the reward payoff determined by the water drop size in hit trials (bottom, different shades of blue). E, Experimental design.
From top to bottom, A stimulus block consisted of three to four deflection amplitudes and one catch trial presented in pseudorandom order. Each session consisted of repeated stimulus blocks. Each
experiment consisted of multiple sessions and was split into different conditions (colored boxes).

Ollerenshaw et al., 2012). In this task, the animal must detect ~ stimulus through a classical psychometric relationship, where the
pulse-shaped deflections of a single whisker and report the deci-  presentation of a sensory stimulus maps directly to a probability of
sion by either generating a lick on a waterspout (Go) or by with-  response (GO, lick) through a logistic function. To predict behav-
holding licking (No-Go) if no stimulus is present (Fig. 1A,B). A ioral dynamics with regard to changing context, the behavioral sen-
trial is categorized as a hit if the animal responds within 1 supon sitivity of the animal is potentially modulated by both “feedforward”
stimulation and a miss if no response is emitted. Catch trials in  representations of the stimulus distribution and corresponding re-
which stimulation is absent are also included and a trial is cate- ~ ward expectation, requiring an internal model of stimulus history,
gorized as a false alarm if random licking occurs or as a correct  and “feedback” representations of actual reward accumulation, re-
rejection if licks are withheld. However, reward is only delivered ~ quiring an internal model of reward history.
in hit trials. Premature licks 2 s before any trial were mildly pun- To investigate the influence of the contextual variables and
ished by a time-out. We report these events as impulsive licks, but ~ disentangle potential sources of behavioral modulation, we de-
distinguish them from false alarms during catch trials for the  signed psychophysical experiments in which probabilistic stimu-
main psychometric data analysis. All seven rats achieved expert  lus distributions and reward contingencies were systematically
level within 10 sessions of operant behavioral training (data not ~ manipulated (Fig. 1D). Experiment 1 manipulated the range of
shown). the distribution of whisker deflection amplitudes; that is, the upper
As in related studies (Busse et al., 2011), it is helpful to visualize =~ and lower limits of amplitudes presented in a psychophysical test,
the relationship between presented sensory stimuli and the resultant ~ but importantly involved amplitudes common to both high-range
behavior in the form of a block diagram as in Figure 1C. Atits core,  and low-range conditions. Experiment 2 held the stimulus range
the behavior is a function of the properties of the current sensory  fixed, but manipulated the shape of the distribution by changing the
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Figure2. Experiment 1.4, Manipulation of stimulus range (magenta vs green). Every stimulus and catch trial (data not shown) was presented with equal probability (p = 0.25). B, Psychometric

curves and response thresholds (vertical lines with C195) for an example animal (rat 2). Each dot corresponds to response probabilities from a single session. Solid curves are logistic fits to the average
data (seven to eight sessions). Dotted line is a hypothetical curve assuming no change in performance (H0) from high-range to low-range stimuli. Dashed line is a hypothetical curve assuming a
change in performance to maintain the same amount of accumulated reward (H1) when switched from high-range to low-range stimuli. C, Water volume accumulated by the same animal under
both conditions. Each line corresponds to one session. Inset, Average total reward volume per session for a given condition. The average number of trials worked by this animal is shown. Error bars
represent SD; otherwise, the figure conventions are the same asin B. D, Metrics of task engagement. Top, Average probability of impulsive licks leading to time-outs. Error bars indicate C195. Bottom,
Histogram of RTs (poststimulus lick) for stimuli close to response threshold (1° and 4°). Median RTs are indicated by arrows. The number of hits for each condition is shown. E, Response thresholds
in Experiment 1a with high-range stimuli presented first, followed by low-range stimuli and another high-range set (n = 3 rats). F, Response thresholds in Experiment 1b reversing the order of
conditions (n = 2rrats). G, Control experiment with no change in condition (n = 2 rats). The data were split into three equal parts. Data points in E-G represent means across sessions within the

same animal. Error bars indicate C195.

relative probabilities within the distribution. Experiment 3 held the
stimulus distribution fixed, but manipulated the reward payoff de-
termined by the water drop size in hit trials. The experiments were
designed such that, on a single trial, one of four different stimuli or a
catch trial was presented after a variable time interval, each with
equal or unequal probability (Fig. 1E). A stimulus block consisted of
a trial sequence comprising three to four stimuli and a catch trial in
pseudorandom order (e.g., each trial type once per block). A behav-
ioral session consisted of repeated stimulus blocks until the animal
disengaged from the task. Therefore, the chosen stimuli occurred
repetitively but randomly within a session. Multiple behavioral ses-
sions (maximum two per day) were then performed to measure the
psychometric performance for a given condition. An experiment
consisted of multiple sessions comprising two or three conditions,
where each condition is defined by a specific stimulus distribution
and reward contingency. To assess long-term behavioral effects, a
specific condition was always kept constant within and across mul-
tiple behavioral sessions (seven to eight per condition) before the
task was changed.

Influence of a shift in stimulus distribution

For the first group of rats (rats 1-3), the stimulus distribution
consisted of three different stimulus amplitudes and a catch trial
(A =10, 1, 4, 16]°; Fig. 2A, magenta), each occurring with the
same probability throughout the first part of Experiment 1 (i.e., a
uniform distribution). We define this as the high-range condi-
tion. In the second part, the stimulus distribution consisted of

three new stimulus amplitudes and a catch trial (A = [0, 0.25, 1,
4]°; Fig. 2A, green), each occurring with the same probability,
which we define as the low-range condition. Importantly, both
conditions share two of the three stimulus amplitudes. However,
the largest amplitude of the high range (16°) is not part of the low
range and, vice versa, the smallest amplitude of the low range
(0.25°) is not part of the high range. Figure 2B depicts a typical
psychometric curve (magenta) of an individual animal perform-
ing the task under the high-range condition. In response to a shift
in stimulus distribution (Experiment 1), we consider two ex-
treme hypotheses. The null hypothesis (H,) asserts that the ani-
mal does not adjust its behavior and thus operates from the same
psychometric function (black dotted curve on top of magenta
curve). In moving from the high-range to the low-range condi-
tion, this would result in a decreased reward rate for the same
number of trials. We consider an alternative hypothesis (H, ), that
the animal adapts its behavior to maintain accumulated reward
in the face of a changing stimulus distribution. In this case, we use
a simple reward expectation model to predict a hypothetical psy-
chometric performance that would maintain reward intake
when the stimulus distribution changes from the high stimulus
range to the low stimulus range (see Materials and Methods).
Note that this prediction represents one of many possible ways to
maintain the same reward in the face of the changing stimulus
probabilities. The black dashed curve in Figure 2B denotes the
hypothetical psychometric function with the same lapse and
guess rate as the original curve from the rat, but allowing it to shift
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to the left such that the expected reward per trial remains con-
stant. The experimentally measured psychometric function in the
low-range condition (green) comes quite close to the hypotheti-
cal performance level based on the assumption of maintained
reward expectation. Consistent with the model’s prediction, the
observed shift results in a significant decrease in response thresh-
old (Tiign = 2.92, Ty, = 0.99, CI95,, = [2.34 3.51], CI95,,,, =
[0.81 1.81], all in units of degrees; data are reported as mean and
95% confidence interval, CI95) and an increase in slope (note the
difference in slope is obscured due to the logarithmic plot; the
increase in probability of response per degree near threshold is
significantly higher for the green compared with magenta curve).
Figure 2C depicts the actual trial-by-trial accumulation of water
volume in each session with different conditions color coded.
Note that overlaid are results for n = 8 sessions with the high-
range distribution (magenta) and n = 8 sessions with the low-
range distribution (green). The slope of reward accumulation in
the low-range condition almost matches that of the high-range
condition and the slope for low case (green) is close to the pre-
diction from the maintenance of accumulated reward hypothesis,
H,, while being clearly separable from the slope representing the
null hypothesis (dotted line). The total reward volume acquired
on average per session in both conditions further confirms this
(Vhignh = 4.04 £ 0.88 ml, V,,, = 3.78 = 0.61 ml; Fig. 2C, inset,
dashed line is H; hypothesis, dotted line is H, hypothesis). An
alternative strategy to maintain the total reward in the low-range
condition could also be to work more trials, which we could not
confirm in this particular dataset (see numbers in Fig. 2C, inset).

Can the behavioral adaptation be explained by a change in the
animal’s task engagement; for example, by overall changes in
arousal, vigilance, or fluctuations in general attention and moti-
vation that may tightly depend on the experimentally imposed
task structure? Although it is challenging to differentiate between
these variables within the Go/No-Go paradigm, we provide two
measures to infer task engagement, the subject’s impulsivity (I =
probability of impulsive lick) leading to time-outs between trials
(Fig. 2D, top) and reaction times (RTs) in correctly detected Go
trials (Fig. 2D, bottom).

When the task is switched from the high-range to the low-
range condition, the animal generates more impulsive licks on
average (g, = 0.25, I, = 0.34, C195,,;4, = [0.20.31], CI95,,, =
[0.3 0.38]). In addition, the same rat shows a trend of slightly
shorter lick RTs upon near threshold stimuli (median RT,;,;, =
360 ms, RT},,, = 329 ms). Both the animal’s increase in impulsivity
and slightly shorter RT suggest an increase in arousal. However, even
though performance improves systematically across all animals un-
dergoing task changes, this effect is clearly inconsistent (e.g., rat 3;
Lyigh = 021, Iy, = 0.21, RT},;, = 244 ms, RT,,,,, = 259 ms, data not
shown). To further rule out whether impulsivity has an effect on
performance, we repeated our psychometric analysis by including all
spontaneous licks; that is, from a pool of impulsive trials (time-outs)
and catch trials, we sampled randomly the same number as stimulus
presentations. Across animals and sessions, an increase in hits does
not correspond to an increase in impulsivity and false alarms, indi-
cating that changes in performance are not due to random guessing
(data not shown).

It is possible that the observed transformation of the psycho-
metric function is due to a steady increase in learning, which
could be irreversible and not tied to the changing stimulus distri-
bution itself. To address this question, we performed an addi-
tional series of tests with reciprocal changes, as well as a control
experiment with fixed conditions. Figure 2E shows response
thresholds from the first group of rats (rat 1-3) with high-range
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stimulus distribution presented first, followed by low-range stimu-
lus distribution and another high-range stimulus distribution.
Changing the stimulus distribution range reciprocally from high to
low and back to high leads to a dynamic threshold progression,
which closely follows the direction of task manipulation, showing a
decrease at the first transition and a rebound after the second tran-
sition. We also performed the inverse task sequence with a different
group of rats (Fig. 2F); that is, we trained naive subjects using low-
range stimulus distributions first (rats 4 and 5) and then changed the
task to the high-range and back to the low-range condition. Again,
all response thresholds follow the direction of task manipulation,
indicating that the animals are able to apply a reciprocal task strategy
modulated by the shift in stimulus distribution. Interestingly, the
second group of rats started with a higher performance level, which
is likely due to their training history (early training with small am-
plitude A = 4° and first psychophysical test with low-range stimulus
distribution A = [0, 0.25, 1, 4]°).

Although both the reversibility of the shift in psychometric
sensitivity and the persistence of the effect in response to a rever-
sal of switching (e.g., high to low and low to high) suggest that the
observed phenomenon cannot just be attributed to a learning
effect, learning obviously plays some role in these trained behav-
iors. To better quantify this effect, we conducted an additional set
of experiments and analyses. Figure 2G depicts response thresh-
olds of two animals that never experienced any change in stimu-
lus distributions (rats 6 and 7). In addition to the high variability
of the individual animal’s response threshold from one session to
another, a permanent decrease in thresholds over many sessions
was observed (averages of n = 8 X 3 sessions). Because the con-
text was never changed experimentally, we consider this steady
improvement in detection performance to be shaped by pro-
gressing training over the course of many experiments. Such
long-term perceptual learning effects have been shown before in
primate psychophysical datasets (Gold et al., 2008).

Influence of stimulus redistribution

In Experiment 1, the change in behavioral performance was in
response to a relatively large manipulation of the stimulus distri-
bution in shifting the range. Is the animal’s strategy sensitive to
more subtle changes in the stimulus distribution? In Experiment
2, we performed a separate set of experiments with the same
animal group, where the stimulus distribution range was fixed,
but the relative probabilities were changed (i.e., no longer uni-
form). Specifically, all four amplitudes plus a catch trial (A = [0,
0.25, 1, 4, 16]°) were used for both the big and small conditions,
but in the big condition, the two stimuli with large amplitudes
were presented with a higher probability than the two small am-
plitudes (Pyiy > Py P[4, 16]° = 0.36, P [0.25, 1]° = 0.09; Fig.
3A, magenta). In the small condition, the order of stimulus prob-
abilities was reversed; that is, the two stimuli with small ampli-
tudes were presented with a higher probability than the two large
amplitudes (P < Poyas P [4, 16]° = 0.09, P [0.25, 1]° = 0.36;
Fig. 3A, green). The probability of a catch trial remained the same
(P [0°] = 0.1, data not shown). Figure 3B depicts typical mea-
sured psychometric curves for an individual animal performing
the task under both conditions (magenta vs green). Based on the
changes in stimulus distributions, we again used the simple re-
ward—expectation model to predict possible changes in psycho-
metric sensitivity. Again, the null hypothesis H, and the
maintenance of reward expectation hypothesis H, are shown as
dotted and dashed lines, respectively. Similar effects become ap-
parent as seen above with the modulated stimulus distribution
range: if the distribution of stimulus presentations tilts to the left;
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Experiment 2.4, Manipulation of stimulus statistics. Stimuli were presented with unequal probabilities, either big amplitudes more often than small amplitudes (magenta, Py;, = 0.36,

Pomanr = 0.09) or vice versa (green, Py = 0.09, Py, = 0.36). Catch trials occurred at an intermediate probability (P,,c, = 0.1, data not shown). B, Psychometric curves and response thresholds

(vertical lines with C195) for an example animal (rat 1). Each dot corresponds to response probabilities from a single session. Solid curves are logistic fits to the average data (seven to eight sessions).
Dotted line is a hypothetical curve assuming no change in performance (H0). Dashed line is a hypothetical curve assuming a change in performance to maintain the same amount of accumulated
reward (H1) when switched from easy (P > Pyqy) to difficult (Pyg << Py, €, Water volume accumulated by the same rat under both conditions. Each line corresponds to one session. Inset,
Average total reward volume per session for a given condition. The average number of trials worked by this animal is shown. Error bars indicate SDs; otherwise, the figure conventions are the same
asin B. D, Response thresholds in Experiment 2a with the easy condition presented first (Py;y > P;,.,y), followed by the difficult condition (P << P,,y) and another easy one (n = 3 rats). E,
Response thresholds in Experiment 2b reversing the order of conditions (n = 2 rats). Note that the first and third conditions were always the same. Data points in D and E represent means across

sessions within the same animal. Error bars indicate C195.

that is, if stimuli with smaller amplitudes occur with a higher
probability, then the predicted psychometric curve also shifts
toward the left with an increase in slope. Again, note that this is
plotted logarithmically and that the small (green) psychometric
curve has a significantly larger increase in probability of response
per degree near threshold compared with the big (magenta) psy-
chometric curve. Even though the experimentally measured psy-
chometric function does not reach this hypothetical performance
level, it shows a significant decrease in response threshold (T, =
3.12, Ty, = 1.22, CI95y,, = [2.63 3.96], C195,,,, = [1.08 1.43];
all numbers in degrees, reported are means and CI95) consistent
with this kind of prediction. The reward volume acquired by the
rat is not the same between the two conditions (V,;y, = 5.29 =
1.46 ml, V., = 3.73 = 1.17 ml), but it is clearly separable from
the theoretical accumulation predicted by the null hypothesis
(i.e., where performance does not change in response to the
change in distribution; Fig. 3C). Interestingly, this animal seemed
to use the strategy of working more trials in the difficult condi-
tion; however, across all animals, we did not find a significant
effect of trials worked under the different task conditions. Again,
we performed this experiment for multiple animals with the dif-

ferent conditions in reversing order and further confirmed the
finding described above (Fig. 3D, E).

These results are consistent with the possibility that reward
accumulation plays an important role in adaptively shaping the
animal’s behavior, where the reward-focused strategy incorpo-
rates an inferred model of the stimulus statistics that enables
detecting the same exact stimulus with different accuracy in dif-
ferent contexts. We further find that changes in performance are
reversible: the animal’s response threshold decreases significantly
with a change from an easy to a difficult condition and vice versa.

Influence of reward

The results described above suggest that a change in sensory con-
text can cause an adaptation of the animal’s performance, pre-
sumably to maintain a certain level of reward. However, it is
possible that such a scenario exists either through an internal
model of reward accumulation driven by the properties of the
sensory stimulus or through direct feedback to the animal in the
form of the actual reward. In Experiments 1 and 2, it is the case
that the stimulus distribution influences the reward accumula-
tion, so these two possibilities are conflated. To further investi-
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Figure4. Experiment3.A, Manipulation of reward. The water drop size in hit trials was changed from the original drop size (blue, medium = 0.09 mi/trial) to half the size (yellow, small = 0.04
ml/trial) or to double the size (magenta, big = 018 ml/trial). B, Psychometric curves and response thresholds (vertical lines with C195) for an example animal (rat 3) under the three reward
conditions. Same conventions as in Figure 2 and 3. Dotted line is a hypothetical curve assuming no change in performance (H0). Yellow dashed line is a hypothetical curve assuming a change in
performance to maintain the same volume of reward per trial (H1a) when switched from a medium drop size to asmall drop size. Magenta dashed line is a hypothetical performance to maintain the
volume of reward (H1b) when switched from a medium drop size to a big drop size. C, Reward volume accumulation of the same rat under all three conditions. D, Average total reward volume
acquired per session for a given condition. The average number of trials worked by this ratis depicted on top. Error bars indicate SDs. E, Same data as in Cbut plotted as reward count. F, Top, Average
total reward count for a given condition. Bottom, Response thresholds of three rats under different conditions (rat 1 experienced only medium and small drops). Data points represent means across

sessions within the same animal. Error bars indicate C195.

gate this issue, we performed another set of experiments with the
same animal group by keeping the stimulus distribution constant
throughout (A = [0, 1, 4, 16]°), but systematically varying the
volume of deterministic reward delivery (Fig. 4A). Specifically,

the drop size in a hit trial was either small (0.04 ml, yellow),
medium (0.09 ml, blue), or big (0.18 ml, magenta) in separate
experimental conditions. Figure 4B depicts typical experimen-
tally measured psychometric curves for an individual animal per-
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forming the task under all three condition, starting with the
medium drop size (blue curve). The null hypothesis assumes that
the animal’s performance is independent of the delivered reward
volume and thus operates from the same psychometric function
across all conditions (black dotted curve on top of blue curve). In
contrast, the feedback model makes several predictions for an
experimentally forced change in volume. One possible strategy
could be to adjust behavior and compensate to maintain a con-
stant accumulated reward volume. In this case, the model pre-
dicts the hypothetical performance levels needed to maintain
reward volume when moving from the medium drop size to the
smaller (H,,) or the bigger (H,;,) drop size. The dashed curves in
Figure 4B represent hypothetical psychometric functions (yellow
for a change to small and magenta for a change to big rewards)
with the same lapse and guess rate as the original experimental
curve, but allowing it to shift left or right such that the expected
reward remains constant. Note that one of the model’s predic-
tions (yellow dashed curve) is located outside the animal’s per-
ceptual range because the chosen reduction from medium to
small drop size was rather extreme. Interestingly, we did not find
any differences in performance; the psychometric curves and re-
sponse thresholds for all conditions are almost identical (RT,,.; =
3.54, RT g = 3.38, RTy,;, = 3.24), suggesting that the reward
volume itself has no effect on the animal’s task strategy. Indeed,
when plotting the animal’s reward accumulation under the dif-
ferent conditions (each hit trial multiplied with the respective
drop volume), a drastic difference in slope and total acquired
reward volume per session becomes obvious (Fig. 4C,D). Even
though the animal established a tendency to work for more trials
when smaller drops were available, the acquired volume at the
end of an experimental session never reached previous levels.
Note that an experiment was always aborted when the animal
stopped working on the task by not licking for an entire stimulus
block. Figure 4, E and F, shows the same data, but now plotted as
a function of reward count (i.e., the cumulative number of times
rewarded), thereby ignoring volume (hit trials not multiplied). In
this case, the accumulated reward counts per session are very
similar, but the sessions had markedly different numbers of trials.
Across all three animals that underwent this experiment, the ef-
fects were robust because we did not see any significant changes
in response threshold (Fig. 4F, bottom).

This finding suggests that a constant sensory environment
with a systematic change in reward volume is not sufficient to
modulate the animal’s task strategy. However, we do not exclude
the possibility that the number of past rewarded trials could be
important for the animal’s task engagement.

Performance adaptation on a finer timescale

The preceding results demonstrate clear, robust effects of dynam-
ically changing stimulus context on behavioral performance.
Thus far, we have only examined behavioral changes on a session-
by-session or experiment-by-experiment basis. However, it is
known from various studies that a subject’s task strategy can
change within sessions (Boneau and Cole, 1967) and even from
one trial to another (Nienborg and Cumming, 2009; Busse et al.,
2011; Friind et al., 2014; Waiblinger et al., 2018). This suggests
that the adaptive behaviors that we observe could also be the
result of a dynamic process on a finer time scale. To estimate
within-session fluctuations in performance, we parsed each ex-
perimental session into three parts of equal trial numbers (e.g.,
n = 3 X 50; Fig. 5A) and calculated the response probabilities
separately. Figure 5, Band C, shows separate psychometric func-
tions of the first and the last part. Consistent with the classic
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findings, the curves shift over to the right (arrows) during the run
time of a session. Interestingly, we find that the shift is clearly
dependent on the stimulus context because it is qualitatively
larger in the easy high-range condition (Fig. 5B, magenta)
compared with the difficult low-range condition (Fig. 5C,
green). To rule out the possibility that this effect was due to
poor fitting of the psychometric curve, we inspected the
goodness-of-fit metric of deviance (D) as well as estimates of
where the goodness-of-fit lay in bootstrapped cumulative
probability distributions of this error metric (CPE) using the
psignifit toolbox (Wichmann and Hill, 2001a). Our deviance
statistics revealed that the data was fit equally well across con-
ditions with the exception of two outliers that likely occurred
due to subsampling of trials with highly variable performance
(rat 1, low range, third part, D = 5.33, and rat 2, high range,
third part; D = 9.51, both with a CPE > 95, indicating a
goodness-of-fit outside the upper confidence limit).

When further comparing the derived response thresholds for
first, second, and third part of the session (Fig. 5D), a significant
increase is obvious toward the end of the high-range condition
(magenta, third part), whereas very little to almost no change
occurs in the low-range condition (green, third part). Therefore,
the difference in behavioral performance as measured by the psy-
chometric curves between the high- and low-range stimulus dis-
tributions in Experiment 1 and between the big and small
stimulus distributions in Experiment 2 does not appear to result
from a static, fixed property of the behavior in these different
stimulus contexts. Instead, it appears to result from a dynamic
process whereby the animal relaxes vigilance gradually through
the session for the “easy” (high-range and big) stimulus distribu-
tions. In contrast, the behavioral performance was relatively in-
variant for the more “difficult” stimulus distributions.

To rule out satiety effects, we repeated this analysis by parsing
each experimental session into three parts of accumulated reward
volume (e.g., 0-1 ml, 1-2 ml, 2-3 ml), thereby ignoring trial
numbers (data not shown). Because animals work different num-
bers of trials and acquire different amounts of water in each ses-
sion, the upper volume limit was determined for an animal’s
typical session (rat 1: 4.5 ml, rat 2: 3 ml, rat3: 3.5 ml) and all trials
beyond this limit were discarded. Consistent with the previous
results (Fig. 5), all three rats show performance changes that are
again more dramatic for the high-range condition and this effect
persists even though the same amount of water is consumed
across conditions. This indicates that the behavioral adaptation
described here is stimulus dependent and cannot solely be attrib-
uted to satiety effects.

The results here validate our predictions of behavioral
modulation due to both feedforward representations of the
stimulus distribution and corresponding reward expectation
and feedback representations of actual reward accumulation
(Fig. 1C). It is in principle difficult to disentangle these two
sources of modulation, but the results here suggest that, in-
deed, the statistical properties of the stimulus—reward rela-
tionship strongly influence the behavior and that the effects
are clearly invariant to the absolute amount of reward, consis-
tent with a feedforward influence. However, an alternate pos-
sibility is that the relevant feedback signal is not the
accumulated volume of reward, but instead an accumulated
running count of rewards received.

Discussion

In this study, we have investigated adaptive behavior in a rodent
tactile detection task. Our findings provide evidence that a chang-
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Behavioral adaptation within sessions. A, Each session was subdivided into three equal parts to assess detection performance across the run time of a session. B, Psychometric curves

for the first and last part of a session in the high-range experiment. C, Psychometric curves for the first and last part of a session in the low-range experiment. Circles represent average response
probabilities (filled circles are the first part, empty circles are the last part). Curves are logistic fits. Arrows indicate the shift in response threshold. D, Evolving response thresholds for first, second,
and third part of a session separately plotted for the high-range condition (magenta) and low-range condition (green). All data points represent means across corresponding parts of multiple
sessions (n = 7-8). Error bars indicate (195. Data are shown separately for three different animals.

ing sensory environment and associated reward expectation have
a substantial impact on the animal’s behavior. We present the
following novel aspects. First, we show that metrics of perfor-
mance deviate significantly and reversibly depending on the
probabilistic distribution of stimulus amplitudes. Second, we
show that this change in performance relates to accumulating a
constant reward count across trials. Third, the behavioral adap-
tation determines task engagement within a behavioral session.

Metrics of behavioral adaptation

It seems reasonable to assume that the behavioral adaptation
described here can be explained by cognitive aspects such as
different levels of arousal, vigilance, or fluctuations in general
attention and motivation that may tightly depend on the experi-
mentally imposed task structure. Furthermore, learning and sa-
tiety effects could dominate our results because they play a major
role in Go/No-Go detection behavior. For instance, over the
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course of a session, the animal may respond progressively less
often because of decreased motivation to obtain reward, which
could lead to the false conclusion that the ability to detect stimuli
has diminished.

On the experimental side, we address these issues in multiple
ways. We control each animal’s impulsivity by using time-outs upon
early guesses, therefore focusing the animal’s attention on the pres-
ence of a stimulus. We control satiety by flexibly adjusting the num-
ber of trials until responding stops or by disentangling the
probabilistic distribution of sensory inputs and accumulation of re-
ward volume in separate tests (Experiments 1 and 2 vs Experiment
3). Finally, we control learning effects by either reversing all changes
(e.g., high to low, back to high range) or by keeping all task-related
parameters constant throughout experiments.

On the analytical side, we infer behavioral performance from
estimates of the psychometric function (Wichmann and Hill,
2001a). In our case, the function is obtained by fitting a logistic
curve to the measured data points that represent the animal’s
response probabilities given a distribution of stimuli. We con-
sider the response threshold at p = 0.5 as an optimal metric of
detection performance because it refers to the critical horizontal
shift of the psychometric function along the stimulus amplitude
axis. In this context, it is important to note that theories that
assume a hard threshold cannot explain decision making in psy-
chophysical tasks (Swets, 1961). Because our effects of changing
response thresholds are highly significant, persistent across ex-
periments (Experiment 1 and 2), and further reversible, we con-
clude that changes in performance are clearly stimulus dependent
and cannot be explained by learning effects.

In addition to psychometrics, we provide several measures of
task engagement: (1) the subject’s spontaneous guessing or im-
pulsivity leading to time-outs between trials, (2) RTs, and (3) we
reanalyzed the data given different satiety levels.

When the task is switched from the easy high-range condition
to the difficult low-range condition, some individuals indeed
show an increase in impulsivity, resulting in more time-outs and
slightly shorter RTs, suggesting that performance changes due to
increased levels of arousal. However, the inconsistencies in these
results across subjects and experiments lead us to conclude that
behavioral adaptation is not solely due to a change in the animal’s
arousal or motivational state.

To rule out satiety effects, we split sessions into equal subsets
and repeated the psychometric analysis (parsed by number of
trials or reward volume). Performance changes are more dra-
matic for the easier stimulus distribution and this effect persists
even though the same amount of water is consumed across con-
ditions. This result shows that satiety can have a general and
substantial influence on behavior (increase in lapse rate), but it
cannot account for the changes in performance under different
task conditions. This notion is further supported by data from
Experiment 3 (Fig. 4) showing that psychometric curves are
highly persistent toward dramatic manipulations in reward vol-
ume. Surprisingly, the same data suggest that the number of past
rewarded trials seems to determine the animal’s task engagement,
thus showing the ability to integrate a distribution of accomplish-
ments across trials.

The experiments here were designed to directly probe reward
expectation in the case when the relationship between perfor-
mance and reward is fixed (i.e., a hit was always rewarded). How-
ever, the findings also predict that a manipulation of reward
probability upon hit trials, an experiment that has not been per-
formed here, would have an impact on task performance if the
adaptive behavior were indeed tied to the actual reward as op-
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posed to the stimulus properties that dictate rewards. Indeed,
many studies using paradigms with asymmetric reward contin-
gencies show that animals are highly sensitive to changes in the
frequency or probability of reward (Herrnstein, 1961; Reynolds,
1961; Nevin et al., 1975; Balci et al., 2009; Teichert and Ferrera,
2010; Stiittgen et al., 2011, 2013). This would open up a set of
additional questions in the context of this study that would be
important to explore.

These findings suggest that the behavioral adaptation de-
scribed here cannot be explained by a single parameter such as
changes in arousal, satiation, or learning. Instead, we propose
that the change in performance results from a complex integra-
tion of the above.

A recent study identifying relevant features for Go/No-Go
behavioral variability on timescales from a few trials to an entire
session further supports this notion (Waiblinger et al., 2018).

Decision theoretical aspects

Our focus on adaptive behavior in a dynamic sensory environ-
ment is motivated by the fact that human and animal behavior is
often consistent with probabilistic computations (Bayes, 1958;
De Finetti et al., 1993; Van Horn, 2003). Especially in tasks in-
volving uncertainty, it is efficient to represent knowledge with
probability distributions and to acquire new knowledge by following
the rules of probabilistic reasoning. Recent theories have evolved to
investigate probabilistic computations in the sensory, motor, and
cognitive domains at the level of neural circuits (for review, see
Pougetetal., 2013). An important aspect of these theories is that they
circumscribe a wide range of tasks from sensory processing to high-
level cognition. However, insights into the neural basis of perceptual
decisions have come mainly from primates and computational
learning models have been characterized mostly for complex human
psychophysical datasets (Nassar et al., 2010). New questions are aris-
ing that might be ideally answered in the rodent, especially with
more recent advances in tools for measurement and manipulation
(Knopfel et al., 2006; Jin et al., 2012; Borden et al., 2017).

By using principles of signal detection theory (Green and
Swets, 1966), we consider two hypothetical scenarios how the
change in performance reported here could be explained within
neuronal circuits. Behavioral adaptation can either be due to in-
ternal changes in sensitivity (discriminability, d'), decision crite-
rion (bias), or both (Luo and Maunsell, 2018). A decision maker
may improve sensitivity by reducing the overlap between signal
and noise distributions. Alternatively, the decision maker may
value hits and false alarms differently by altering the criterion.
These two changes can be distinguished by the decision makers’
false alarm rate. An improvement in hit rate brought about by a
decrease in criterion is associated with more false alarms, whereas
the same increase in hit rate brought about by an increase in
sensitivity is associated with fewer false alarms.

Our data clearly show an increase of hits for a particular stim-
ulus within the low-range distribution; however, animals did not
always exhibit full adaptation as predicted by our reward model
(Fig. 3B). Because there is no consistent change of false alarms or
impulsivity in our data, we rule against the interpretation of changes
in criterion or sensitivity alone and propose that rats indeed adopt a
mixed strategy that is further compromised by some amount of
cognitive effort. Again, this implies that decisions do not occur in
isolation, but rather depend on accomplishments or failures at dif-
ferent points in time. This hypothesis is supported by a large body of
literature suggesting that behavioral actions are not simply based on
current sensory observations, but are often based on a statistically
optimal integration of sensory observations and the subjects predic-
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tions or prior knowledge (Shadmehr et al., 2010). Priors, history
biases, and changing stimulus—action associations can partly affect
neuronal computations at primary sensory and higher-order corti-
callevels (Busse et al., 2011; Jaramillo et al., 2014; Akrami et al., 2018;
Waiblinger et al., 2018).

Our current study supports the notion of statistical integra-
tion and probabilistic computations in the rodent brain and pres-
ents the novel aspect of behavioral adaptation in a well controlled
dynamic framework. By systematically changing the sensory en-
vironment, we are able to modulate the rats’ behavioral strategy
consistent with the probabilistic distribution of sensory inputs.
Our simple model of behavioral adaptation captures the ob-
served change in psychometric sensitivity and predicts a strategy
seeking to maintain reward counts in the face of the changing
stimulus distribution. Therefore, we propose that rats rely on an
internal model integrating the distribution of sensory inputs
across trials and altering their responses in a probabilistic manner
to maintain the desired payoff with minimal effort.
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