
CSE 6230 - Spring 2024
Instructor: Prof. Helen Xu

Homework 3 - Vectorization
Due: Feb 15 @ 4:55pm on Gradescope
Deliverables: Code and writeup

This homework is a hands-on introduction to Intel Vector Extensions. You will learn how
to vectorize your code, figure out when vectorization has succeeded and debug when
vectorization seems to have worked but you aren’t seeing speedup.

Your homework should be completed individually (not in groups).

Code and some parts of the handout are from MIT 6.172 and Brian Wheatman.

All instructions in this handout assume that we are running on PACE ICE. Instructions
for logging in are in HW1.

Setup

Get the code from git
The starter code is available on Github and should work out of the box. To get started,
we recommend you log in to PACE ICE and download the code:

$ git clone https://github.com/cse6230-spring24/hw3.git

Homework submission instructions
There are two parts to the homework: a writeup and the code. The writeup should be in
pdf form, and the code should be in zip form. There will be two submission slots in
Gradescope called “Homework 3 - writeup” and “Homework 3 - code”. You should
submit the writeup and code separately in their respective slots.

To get the code from PACE ICE to your local machine to submit, first zip it up on PACE
ICE:

$ zip -r hw3.zip hw3/

1

https://www.gradescope.com/courses/715902
https://ocw.mit.edu/courses/6-172-performance-engineering-of-software-systems-fall-2018/resources/mit6_172f18hw3/
https://github.com/randalburns/pcds.2023/blob/main/ebook/activities/activity3.ipynb


CSE 6230 - Spring 2024
Instructor: Prof. Helen Xu

Then from the terminal (or terminal equivalent) your local machine (e.g., your personal
laptop), scp the code over.

$ scp <your-username-here>@login-ice.pace.gatech.edu:<path-to-hw2.zip>

<local-file-location>

For example, if I had hw3.zip in my home directory on PACE ICE and wanted to copy it
into my current directory on my local machine, I would run:

$ scp hxu615@login-ice.pace.gatech.edu:~/hw3.zip .

2

mailto:hxu615@login-ice.pace.gatech.edu


CSE 6230 - Spring 2024
Instructor: Prof. Helen Xu

Part 1: Loops tutorial
Consider a loop that performs element-wise addition between two arrays A and B,
storing the result in array C. This loop is data parallel because the operation during any
iteration i1 is independent of the operation during any iteration i2 where i1=/= i2. In short,
the compiler should be allowed to schedule each iteration in any order, or pack multiple
iterations into a single clock cycle. The first option is covered by thread-level parallelism
(e.g., via OpenMP). The second case is covered by vectorization, also known as “single
instruction, multiple data” or SIMD.

Vectorization is a delicate operation: very small changes to loop structure may cause
gcc to give up and not vectorize at all, or to vectorize your code but not yield the
expected speedup. Occasionally, unvectorized code may be faster than vectorized
code. Before we can understand this fragility, we must get a handle on how to interpret
what gcc is actually doing when it vectorizes code; in Part 2, you will see the actual
performance impacts of vectorizing code.

Example 1
We will start with the following simple loop:

Although gcc automatically vectorizes at -O3, you should always look at the assembly to
see exactly how it has been vectorized, since it is not guaranteed to be using the vector
registers optimally. Here is a guide to reading x86 assembly, and here is an x86
instruction set reference.

3

https://www.cs.virginia.edu/~evans/cs216/guides/x86.html
https://c9x.me/x86/
https://c9x.me/x86/


CSE 6230 - Spring 2024
Instructor: Prof. Helen Xu

To view the assembly, we will use the Godbolt compiler explorer. Compiler Explorer is
an interactive online compiler which shows the assembly output of compiled C/C++
(among many other languages). It also provides helpful highlighting to show which parts
of the original code correspond to which part of the assembly.

Here is the assembly if we turn off vectorization using the -fno-tree-vectorize flag:
https://godbolt.org/z/cbh8TjYhc

By default, this code is vectorized to some extent on -O3:
https://godbolt.org/z/sfch95T4f

You should see something like this:

To learn more about each assembly instruction, hover over it with the mouse.

Looking at the assembly code, we can see that this code first checks if there is a partial
memory location overlap between array a and b. If there is an overlap, then it does a
simple non-vectorized code (.L2). If there is no overlap, then it can do a vectorized
version (.L4). The above can, at best, be called partially vectorized.

The problem is that the compiler is constrained by what we tell it about the arrays. If we
tell it more, then perhaps it can do more optimization. The most obvious thing is to
inform the compiler that no overlap is possible. This is done in standard C by using the
restrict qualifier for the pointers.

Modify the C code in Godbolt to match the following:

4

https://godbolt.org/
https://godbolt.org/z/cbh8TjYhc
https://godbolt.org/z/sfch95T4f


CSE 6230 - Spring 2024
Instructor: Prof. Helen Xu

Now you should see the following assembly:

The generated code is better, but it is assuming the data are NOT 16 bytes aligned
(movdqu is unaligned move). It also means that the loop above can not assume that
both arrays are aligned.

If gcc were smart, it could test for the cases where the arrays are either both aligned, or
both unaligned, and have a fast inner loop. However, it does not do that currently.
So in order to get the performance we are looking for, we need to tell clang that the
arrays are aligned. There are a couple of ways to do that. The first is to construct a
(non-portable) aligned type, and use that in the function interface. The second is to add
an intrinsic or two within the function itself. The second option is easier to implement on
older code bases, as other functions calling the one to be vectorized do not have to be
modified. The intrinsic gcc has for this is called __builtin_assume_aligned:

5



CSE 6230 - Spring 2024
Instructor: Prof. Helen Xu

After you add the instruction __builtin_assume_aligned, you should see something
similar to the following output:

Now finally, we get the nice tight vectorized code (movdqa is aligned move) we were
looking for, because gcc has used packed SSE instructions to add 16 bytes at a time. It
also manages to load and store two at a time, which it did not do last time.

(As an alternative, in C++, there is a portable assume_aligned function in STD).

Next, we try to turn on AVX2 instructions by adding the flag -mavx2 to the compiler flags
in Godbolt:

6

https://en.cppreference.com/w/cpp/memory/assume_aligned


CSE 6230 - Spring 2024
Instructor: Prof. Helen Xu

7



CSE 6230 - Spring 2024
Instructor: Prof. Helen Xu

Note: There may not be much performance difference between unaligned and aligned
instructions on some architectures. For example, here are the latency and throughput
on recent Intel architectures for unaligned and aligned instructions.

Unaligned:

Aligned:

8

https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=loadu_si256&ig_expand=4108,4030,4108
https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=load_si256&ig_expand=4108,4030


CSE 6230 - Spring 2024
Instructor: Prof. Helen Xu

Example 2
Now that we understand what we need to tell the compiler, how much more complex can the
loop be before auto-vectorization fails?

Let’s look at another example (Godbolt here: https://godbolt.org/z/bfKKz5snW)

Note that the assembly does not vectorize nicely.

9

https://godbolt.org/z/bfKKz5snW


CSE 6230 - Spring 2024
Instructor: Prof. Helen Xu

Example 3
Let’s look at another example loop (Godbolt here: https://godbolt.org/z/53r5n7Y7f):

And the assembly:

10

https://godbolt.org/z/53r5n7Y7f


CSE 6230 - Spring 2024
Instructor: Prof. Helen Xu

Example 4
Take a look at the following loop (Godbolt here: https://godbolt.org/z/ofx6q6c31):

You should see the non-vectorized code with the addsd instruction.

Notice that this does not actually vectorize as the xmm registers are operating on 8 byte
chunks. The problem here is that gcc is not allowed to re-order the operations we give
it. Even though the addition operation is associative with real numbers, they are not with
floating point numbers (e.g., due to roundoff error).

Furthermore, we need to tell clang that reordering operations is okay with us. To do this,
we need to add another compile-time flag, -ffast-math. Add the compilation flag
-ffast-math to Godbolt and recompile.

11

https://godbolt.org/z/ofx6q6c31


CSE 6230 - Spring 2024
Instructor: Prof. Helen Xu

Check the assembly and verify that it does vectorize properly. Here is the output from
running with and without -ffast-math (example4.c is in hw3/ from git):

12



CSE 6230 - Spring 2024
Instructor: Prof. Helen Xu

Example 5
A simplifying feature in our loop is that its stride (or step) equals 1. Stride corresponds
to how big our steps through the array are; e.g., j++, j+=2, etc.

Let’s look at an example with a different stride (Godbolt here:
https://godbolt.org/z/K14cM1G33 ):

Look at the assembly in Godbolt.

13

https://godbolt.org/z/K14cM1G33


CSE 6230 - Spring 2024
Instructor: Prof. Helen Xu

Example 6
A very common operation is to combine elements in an array (somehow) into a single
value. For instance, one might wish to sum up the elements in an array. For example
(Godbolt here: https://godbolt.org/z/K7d6exnKv):

The compiler can implement reduction via a technique called strip mining.

As discussed in lecture, this reduction will only vectorize if the combination operation (+)
is associative.

14

https://godbolt.org/z/K7d6exnKv
https://hogback.atmos.colostate.edu/rr/old/tidbits/intel/macintel/doc_files/source/extfile/optaps_for/common/optaps_vec_mine.htm


CSE 6230 - Spring 2024
Instructor: Prof. Helen Xu

Part 2: Writing vectorized code
In this part you will tackle a new problem, write some code for it, and then analyze it. The
problem can be found at https://godbolt.org/z/T7orGs84a

The goal of the problem is to count occurrences of bytes in an array.

Here is the starting code:

To build it with the test driver, go to the hw3/ repository and run

$ g++ -O3 -mavx2 count_bytes.cpp -o count_bytes

$ ./count_bytes

Make sure you have allocated an interactive node with at least one core before you run
the code.

You should see output like the following:

$ Time per trial: 0.359268 seconds, got 4196416 as the count.

How to view assembly in the terminal

To inspect the assembly code for count_bytes.cpp, run the following

$ g++ -S -O3 -g -o count_bytes.s count_bytes.cpp

Now, let’s inspect the assembly code in count_bytes.s, which should give you the
assembly without line annotations.

15

https://godbolt.org/z/T7orGs84a


CSE 6230 - Spring 2024
Instructor: Prof. Helen Xu

To get the assembly with line annotations:

$ as -alhnd count_bytes.s > count_bytes.lst

Now count_bytes.lst should have the assembly with corresponding lines from the
original C++.

Optimizing the code

For documentation about intrinsics, check the Intel Intrinsics Guide.

That’s the end of this homework! Submit your writeup and code as described in the
“Homework submission instructions” to Gradescope.

16

https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html

