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Static set of n keys

Data structure to injectively/bijectively
map keys to the first n integers

MPHF: Lower bound 1.44n bits ≪ space of input keys

Goal: Near minimal space, constant time query, linear
construction time

Applications: databases, hash tables, AMQ,
retrieval, replace pointers
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Minimal Perfect Hash Function (MPHF)



Unstructured Search Structured Search

SicHash
PH through Retrieval

Brute Force

PHOBIC

ShockHash
RecSplit

Brute Force
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Overview



Given a hash function
try seeds 1, 2, 3, . . .

Perfect hash function data structure:
store successful seed s

Expected tries: nn/n! ≈ en

⇒≈ n log e ≈ 1.44n bits (this is optimal)

But exponential construction time, ≈linear query time
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Brute-Force Construction
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Brute-Force Construction
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Brute-Force Construction
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PH through Retrieval

Brute Force

PHOBIC

ShockHash
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Randomly hash keys to buckets
Store prefix sum of bucket sizes
using Elias-Fano coding
Tree structure within buckets

Brute-force search for
splitting hash function
Specific shape depending only
on bucket size

Small leaves
Brute-force search for
bijection hash function
Practicable for ℓ ≤ 16

Bucket 0 Bucket 1 Bucket n/b

Input keys

...

h

Store seeds for leaves and inner nodes (variable-bitlength, geometrically distributed).
Overall: optimal +O(1) bits per node.
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RecSplit [EGV20, BKLS23a]



Split keys into two subsets

Determine function values
independently

Cyclically “rotate” word b

Store seed and rotation s · ℓ+ r

Test ≈ ℓ times fewer seeds

Can use lookup tables

1-bit hash function

1 0 1 1 0 10 010a b
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Bijections: Rotation Fitting



Split keys into two subsets

Determine function values
independently

Cyclically “rotate” word b

Store seed and rotation s · ℓ+ r

Test ≈ ℓ times fewer seeds

Can use lookup tables

1-bit hash function

1 0 1 1 0 10 010a b

1 0a 1 10

OR

hs hs

1 11 1 0

b

ℓ

John Lisa Dave Mary AnnaAnna

John LisaDave Mary Anna

0 10 01

H
as

h
fu

nc
tio

ns

SampleMPHF

7/28 Jun 17, 2024 Hermann, Lehmann, Sanders, Walzer: Mining Perfect Hash Functions Institute of Theoretical Informatics, Algorithm Engineering

Bijections: Rotation Fitting



Split keys into two subsets

Determine function values
independently

Cyclically “rotate” word b

Store seed and rotation s · ℓ+ r

Test ≈ ℓ times fewer seeds

Can use lookup tables

1-bit hash function

1 0 1 1 0 10 010a b

1 0a 1 10

Rotate b by r = 1

OR

hs hs

1 11 0 1

0b

ℓ

John Lisa Dave Mary AnnaAnna

John LisaDave Mary Anna

10 01 0

H
as

h
fu

nc
tio

ns

SampleMPHF

7/28 Jun 17, 2024 Hermann, Lehmann, Sanders, Walzer: Mining Perfect Hash Functions Institute of Theoretical Informatics, Algorithm Engineering

Bijections: Rotation Fitting



Split keys into two subsets

Determine function values
independently

Cyclically “rotate” word b

Store seed and rotation s · ℓ+ r

Test ≈ ℓ times fewer seeds

Can use lookup tables

1-bit hash function

1 0 1 1 0 10 010a b

1 0a 1 10

OR

hs hs

1 11 0 0

0b

Rotate b by r = 2

ℓ

John Lisa Dave Mary AnnaAnna

John LisaDave Mary Anna

10 01 0 1

H
as

h
fu

nc
tio

ns

SampleMPHF

7/28 Jun 17, 2024 Hermann, Lehmann, Sanders, Walzer: Mining Perfect Hash Functions Institute of Theoretical Informatics, Algorithm Engineering

Bijections: Rotation Fitting



Split keys into two subsets

Determine function values
independently

Cyclically “rotate” word b

Store seed and rotation s · ℓ+ r

Test ≈ ℓ times fewer seeds

Can use lookup tables

1-bit hash function

1 0 1 1 0 10 010a b

1 0a

b

1 10

1 11 1 1

OR

hs hs

Rotate b by r = 3

ℓ

John Lisa Dave Mary AnnaAnna

John LisaDave Mary Anna

0 10 01 0 01

"

H
as

h
fu

nc
tio

ns

SampleMPHF

7/28 Jun 17, 2024 Hermann, Lehmann, Sanders, Walzer: Mining Perfect Hash Functions Institute of Theoretical Informatics, Algorithm Engineering

Bijections: Rotation Fitting



Bit parallelism
Bit operations rotate all keys of a leaf

SIMD parallelism
Each lane tries a different hash
function seed

Multi-Threaded parallelism
Calculate different buckets in parallel
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Bucket 0 Bucket 1

Input keys

CPU Parallelization



Threads try different seeds

Groups of threads work on
different tree nodes

2D grid of groups to calculate all
trees with same shape

Streams to calculate different tree
shapes in parallel
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Kernel

Kernel

Kernel

Kernel

Kernel

GPU Parallelization



Unstructured Search Structured Search

SicHash
PH through Retrieval

Brute Force

PHOBIC

ShockHash
RecSplit PH through Retrieval
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Overview



Each object has 2k choices

Find collision-free mapping
through perfect matching or cuckoo hashing

Store static function S → {0, 1}k in retrieval data structure

Space: kn + o(n) bits
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Perfect Hashing by Retrieval [DHSW22a]



k = 1 bits: yields PHF with range 1..2n

k = 2 bits: yields PHF with range 1..1.024n
can be modified to an MPHF [PT21].
Overall: ≈ 2.15 bits per key
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Perfect Hashing by Retrieval [DHSW22a]



Unstructured Search Structured Search

SicHash
PH through Retrieval

Brute Force
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Mix of 1/2/3-bit retrieval [DGM+10] + Partitioning + Retries

Around 2 bits per key for MPHF

... ...

Output data structures:

Hash
Hash function assignments

Input objects

Retrieval data

Construct
cuckoo table

structures

...

1-bit 2-bitBucket 1
Bucket 2

Bucket N/b Size

Offsets

Size
Size

Seeds

Seed

Seed
Seed

1-bit

1-bit

R1 R2 R3

3-bit2-bit

2-bit 3-bit
3-bit
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SicHash



Unstructured Search Structured Search

SicHash
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Overview



Hybrid between RecSplit and
1-bit SicHash-MPHF

Sample random graphs

Store choice between two candidates
[DHSW22a, LSW23c]

Problem: Unlikely to work for
> n/2 edges [PR04], here we use n

ShockHash: Do it anyway, try many seeds

Orientability check?
Success probability?
Space usage?
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ShockHash



Hybrid between RecSplit and
1-bit SicHash-MPHF

Sample random graphs

Store choice between two candidates
[DHSW22a, LSW23c]

Problem: Unlikely to work for
> n/2 edges [PR04], here we use n

ShockHash: Do it anyway, try many seeds

Orientability check?
Success probability?
Space usage?

x h0(x) h1(x)

John

Lisa

Dave

Mary

Anna

3 4

2 1

2 3

5 3

2 4

1
2

3

4

5

Retrieval
John
Lisa
Dave
Mary
Anna

0
1
0
0
1

Lisa

Mary

D
ave

John

An
na

Seed

ShockHash data structure

16/28 Jun 17, 2024 Hermann, Lehmann, Sanders, Walzer: Mining Perfect Hash Functions Institute of Theoretical Informatics, Algorithm Engineering

ShockHash



1-orientable if each component contains
no more edges than nodes

Here: Tree with one additional edge

Can be checked in linear time using
connected components algorithms

⇒ We check the 2n different states of the
retrieval data structure in linear time
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Orientability Check
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Success Probability
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Success Probability



n + o(n) bits for 1-bit retrieval.
Practice: 1.007n bits using BuRR
[DHSW22b]

Expected space for seed:

≈ log
(

n
2n−1 · nn

n!

)
≈ n log e − n bits

Together: ≈ n log e bits (optimal!)
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Similar space as brute-force but nearly 2n times faster!
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Space Usage



First implementation dominated by
orientability check
⇒Filter seeds that can’t work

Efficiently in registers

Filter passed with probability only 0.84n

Main ingredient for making ShockHash
feasible in practice
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Filtering



Extension of ShockHash

Test all combinations from a set of seed
candidates

Filter halves before combining them

Brute-force: en ≈ 2.72n

⇒ ShockHash: 1.36n

⇒ Bipartite ShockHash: 1.166n

...
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Pool of candidates Pool of candidates
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Bipartite ShockHash
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Test all combinations from a set of seed
candidates

Filter halves before combining them

Brute-force: en ≈ 2.72n

⇒ ShockHash: 1.36n

⇒ Bipartite ShockHash: 1.166n

...

John

Lisa

Dave

...

Pool of candidates Pool of candidates

21/28 Jun 17, 2024 Hermann, Lehmann, Sanders, Walzer: Mining Perfect Hash Functions Institute of Theoretical Informatics, Algorithm Engineering

Bipartite ShockHash



Cuckoo hashing hard because of irregular memory access

Filtering is easy and dominates asymptotically
Hybrid implementation planned

Filtering and bit fiddling on the GPU
Cuckoo hashing on the CPU
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ShockHash on the GPU
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Evaluation (100M keys, single threaded)
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Evaluation (100M keys, single threaded)
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State-of-the-art [BBD09, FCH92, PT21]



Choose a number of buckets proportional to
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Distribute keys to buckets using random
hash function

For each bucket: Search for a seed such
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The first buckets are easier to insert

Therefore insert in non-increasing size

Exaggerating this effect by intentionally
making some buckets even larger is helpful

Previous state-of-the-art was to make 30%
of the buckets larger

We determined optimal bucket sizes

idea: buckets should have the same
success probability in expectation

− 1
ln(1−x)
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PHOBIC [HLP+24]



Threads try different seeds

Groups of threads work on different
partitions

MIMD on SIMD emulation [San94]
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PHOBIC on GPU



Unstructured Search Structured Search

SicHash
PH through Retrieval

Brute Force

PHOBIC

ShockHash
RecSplit

Tradeoff between space efficient brute-force and larger linear time algorithms
Engineering wide range of tradeoffs
Supported by GPUs and parallelization
Future work

Combine ShockHash and PHOBIC
Hybrid ShockHash GPU implementation
How close can we get to the optimal space without construction time deteriorating?
More use of data structures to accelerate search
Hardness proofs for achieving lower bound (+O(1)) ?
Better performance (construction and query) when more bits are allowed (3–8)
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