
D
esign

Analysis

M
odelEx

pe
rim

ent

Im
p
le
m
e
n
ta
tio

n

Algorithm
Engineering

Mining Perfect Hash Functions

SPAA Workshop

Hans-Peter Lehmann, Stefan Hermann, Peter Sanders, Stefan Walzer | Jun 17, 2024

KIT – The Research University in the Helmholtz Association www.kit.edu

https://www.kit.edu


Static set of n keys

Data structure to injectively/bijectively
map keys to the first n integers

MPHF: Lower bound 1.44n bits ≪ space of input keys

Goal: Near minimal space, constant time query, linear
construction time

Applications: databases, hash tables, AMQ,
retrieval, replace pointers

1

2

3

4

5

nn

John

Lisa

Dave

Mary

Anna

Minimal Perfect Hash Function

?

2/28 Jun 17, 2024 Hermann, Lehmann, Sanders, Walzer: Mining Perfect Hash Functions Institute of Theoretical Informatics, Algorithm Engineering

Minimal Perfect Hash Function (MPHF)



Unstructured Search Structured Search

SicHash
PH through Retrieval

Brute Force

PHOBIC

ShockHash
RecSplit

Brute Force

3/28 Jun 17, 2024 Hermann, Lehmann, Sanders, Walzer: Mining Perfect Hash Functions Institute of Theoretical Informatics, Algorithm Engineering

Overview



Given a hash function
try seeds 1, 2, 3, . . .

Perfect hash function data structure:
store successful seed s

Expected tries: nn/n! ≈ en

⇒≈ n log e ≈ 1.44n bits (this is optimal)

But exponential construction time, ≈linear query time

H
as

h
fu

nc
tio

ns

SampleMPHF

nn

John

Lisa

Dave

Mary

Anna

Random Hash Function
seed s = 1

%

"

"

"

4/28 Jun 17, 2024 Hermann, Lehmann, Sanders, Walzer: Mining Perfect Hash Functions Institute of Theoretical Informatics, Algorithm Engineering

Brute-Force Construction



Given a hash function
try seeds 1, 2, 3, . . .

Perfect hash function data structure:
store successful seed s

Expected tries: nn/n! ≈ en

⇒≈ n log e ≈ 1.44n bits (this is optimal)

But exponential construction time, ≈linear query time

H
as

h
fu

nc
tio

ns

SampleMPHF

nn

John

Lisa

Dave

Mary

Anna

Random Hash Function
seed s = 2

%

"

%

4/28 Jun 17, 2024 Hermann, Lehmann, Sanders, Walzer: Mining Perfect Hash Functions Institute of Theoretical Informatics, Algorithm Engineering

Brute-Force Construction



Given a hash function
try seeds 1, 2, 3, . . .

Perfect hash function data structure:
store successful seed s

Expected tries: nn/n! ≈ en

⇒≈ n log e ≈ 1.44n bits (this is optimal)

But exponential construction time, ≈linear query time

H
as

h
fu

nc
tio

ns

SampleMPHF

nn

John

Lisa

Dave

Mary

Anna

Random Hash Function
seed s = 3

"

"

"

"

"

4/28 Jun 17, 2024 Hermann, Lehmann, Sanders, Walzer: Mining Perfect Hash Functions Institute of Theoretical Informatics, Algorithm Engineering

Brute-Force Construction



Unstructured Search Structured Search

SicHash
PH through Retrieval

Brute Force

PHOBIC

ShockHash
RecSplitRecSplit

5/28 Jun 17, 2024 Hermann, Lehmann, Sanders, Walzer: Mining Perfect Hash Functions Institute of Theoretical Informatics, Algorithm Engineering

Overview



Randomly hash keys to buckets
Store prefix sum of bucket sizes
using Elias-Fano coding
Tree structure within buckets

Brute-force search for
splitting hash function
Specific shape depending only
on bucket size

Small leaves
Brute-force search for
bijection hash function
Practicable for ℓ ≤ 16

Bucket 0 Bucket 1 Bucket n/b

Input keys

...

h

Store seeds for leaves and inner nodes (variable-bitlength, geometrically distributed).
Overall: optimal +O(1) bits per node.

6/28 Jun 17, 2024 Hermann, Lehmann, Sanders, Walzer: Mining Perfect Hash Functions Institute of Theoretical Informatics, Algorithm Engineering

RecSplit [EGV20, BKLS23a]



Split keys into two subsets

Determine function values
independently

Cyclically “rotate” word b

Store seed and rotation s · ℓ+ r

Test ≈ ℓ times fewer seeds

Can use lookup tables

1-bit hash function

1 0 1 1 0 10 010a b

hs hs

ℓ

John Lisa Dave Mary AnnaAnna

John LisaDave Mary Anna

H
as

h
fu

nc
tio

ns

SampleMPHF

7/28 Jun 17, 2024 Hermann, Lehmann, Sanders, Walzer: Mining Perfect Hash Functions Institute of Theoretical Informatics, Algorithm Engineering

Bijections: Rotation Fitting



Split keys into two subsets

Determine function values
independently

Cyclically “rotate” word b

Store seed and rotation s · ℓ+ r

Test ≈ ℓ times fewer seeds

Can use lookup tables

1-bit hash function

1 0 1 1 0 10 010a b

1 0a 1 10

OR

hs hs

1 11 1 0

b

ℓ

John Lisa Dave Mary AnnaAnna

John LisaDave Mary Anna

0 10 01

H
as

h
fu

nc
tio

ns

SampleMPHF

7/28 Jun 17, 2024 Hermann, Lehmann, Sanders, Walzer: Mining Perfect Hash Functions Institute of Theoretical Informatics, Algorithm Engineering

Bijections: Rotation Fitting



Split keys into two subsets

Determine function values
independently

Cyclically “rotate” word b

Store seed and rotation s · ℓ+ r

Test ≈ ℓ times fewer seeds

Can use lookup tables

1-bit hash function

1 0 1 1 0 10 010a b

1 0a 1 10

Rotate b by r = 1

OR

hs hs

1 11 0 1

0b

ℓ

John Lisa Dave Mary AnnaAnna

John LisaDave Mary Anna

10 01 0

H
as

h
fu

nc
tio

ns

SampleMPHF

7/28 Jun 17, 2024 Hermann, Lehmann, Sanders, Walzer: Mining Perfect Hash Functions Institute of Theoretical Informatics, Algorithm Engineering

Bijections: Rotation Fitting



Split keys into two subsets

Determine function values
independently

Cyclically “rotate” word b

Store seed and rotation s · ℓ+ r

Test ≈ ℓ times fewer seeds

Can use lookup tables

1-bit hash function

1 0 1 1 0 10 010a b

1 0a 1 10

OR

hs hs

1 11 0 0

0b

Rotate b by r = 2

ℓ

John Lisa Dave Mary AnnaAnna

John LisaDave Mary Anna

10 01 0 1

H
as

h
fu

nc
tio

ns

SampleMPHF

7/28 Jun 17, 2024 Hermann, Lehmann, Sanders, Walzer: Mining Perfect Hash Functions Institute of Theoretical Informatics, Algorithm Engineering

Bijections: Rotation Fitting



Split keys into two subsets

Determine function values
independently

Cyclically “rotate” word b

Store seed and rotation s · ℓ+ r

Test ≈ ℓ times fewer seeds

Can use lookup tables

1-bit hash function

1 0 1 1 0 10 010a b

1 0a

b

1 10

1 11 1 1

OR

hs hs

Rotate b by r = 3

ℓ

John Lisa Dave Mary AnnaAnna

John LisaDave Mary Anna

0 10 01 0 01

"

H
as

h
fu

nc
tio

ns

SampleMPHF

7/28 Jun 17, 2024 Hermann, Lehmann, Sanders, Walzer: Mining Perfect Hash Functions Institute of Theoretical Informatics, Algorithm Engineering

Bijections: Rotation Fitting



Bit parallelism
Bit operations rotate all keys of a leaf

SIMD parallelism
Each lane tries a different hash
function seed

Multi-Threaded parallelism
Calculate different buckets in parallel

8/28 Jun 17, 2024 Hermann, Lehmann, Sanders, Walzer: Mining Perfect Hash Functions Institute of Theoretical Informatics, Algorithm Engineering

Bucket 0 Bucket 1

Input keys

CPU Parallelization



Threads try different seeds

Groups of threads work on
different tree nodes

2D grid of groups to calculate all
trees with same shape

Streams to calculate different tree
shapes in parallel

9/28 Jun 17, 2024 Hermann, Lehmann, Sanders, Walzer: Mining Perfect Hash Functions Institute of Theoretical Informatics, Algorithm Engineering

Kernel

Kernel

Kernel

Kernel

Kernel

GPU Parallelization



Unstructured Search Structured Search

SicHash
PH through Retrieval

Brute Force

PHOBIC

ShockHash
RecSplit PH through Retrieval

10/28 Jun 17, 2024 Hermann, Lehmann, Sanders, Walzer: Mining Perfect Hash Functions Institute of Theoretical Informatics, Algorithm Engineering

Overview



Each object has 2k choices

Find collision-free mapping
through perfect matching or cuckoo hashing

Store static function S → {0, 1}k in retrieval data structure

Space: kn + o(n) bits

H
as

h
fu

nc
tio

ns

SampleMPHF

1 2 3 4 5 6 7

A → 0
B → 3

...

Retrieval

1 0 1 2

A B

3 2

John Lisa

0 3

11/28 Jun 17, 2024 Hermann, Lehmann, Sanders, Walzer: Mining Perfect Hash Functions Institute of Theoretical Informatics, Algorithm Engineering

Perfect Hashing by Retrieval [DHSW22a]



k = 1 bits: yields PHF with range 1..2n

k = 2 bits: yields PHF with range 1..1.024n
can be modified to an MPHF [PT21].
Overall: ≈ 2.15 bits per key

1 2 3 4 5 6 7

A → 0
B → 3

...

Retrieval

1 0 1 2

A B

3 2

John Lisa

0 3

12/28 Jun 17, 2024 Hermann, Lehmann, Sanders, Walzer: Mining Perfect Hash Functions Institute of Theoretical Informatics, Algorithm Engineering

Perfect Hashing by Retrieval [DHSW22a]



Unstructured Search Structured Search

SicHash
PH through Retrieval

Brute Force

PHOBIC

ShockHash SicHash
RecSplit

13/28 Jun 17, 2024 Hermann, Lehmann, Sanders, Walzer: Mining Perfect Hash Functions Institute of Theoretical Informatics, Algorithm Engineering

Overview



Mix of 1/2/3-bit retrieval [DGM+10] + Partitioning + Retries

Around 2 bits per key for MPHF

... ...

Output data structures:

Hash
Hash function assignments

Input objects

Retrieval data

Construct
cuckoo table

structures

...

1-bit 2-bitBucket 1
Bucket 2

Bucket N/b Size

Offsets

Size
Size

Seeds

Seed

Seed
Seed

1-bit

1-bit

R1 R2 R3

3-bit2-bit

2-bit 3-bit
3-bit

14/28 Jun 17, 2024 Hermann, Lehmann, Sanders, Walzer: Mining Perfect Hash Functions Institute of Theoretical Informatics, Algorithm Engineering

SicHash



Unstructured Search Structured Search

SicHash
PH through Retrieval

Brute Force

PHOBIC

ShockHash
RecSplit

ShockHash

15/28 Jun 17, 2024 Hermann, Lehmann, Sanders, Walzer: Mining Perfect Hash Functions Institute of Theoretical Informatics, Algorithm Engineering

Overview



Hybrid between RecSplit and
1-bit SicHash-MPHF

Sample random graphs

Store choice between two candidates
[DHSW22a, LSW23c]

Problem: Unlikely to work for
> n/2 edges [PR04], here we use n

ShockHash: Do it anyway, try many seeds

Orientability check?
Success probability?
Space usage?

H
as

h
fu

nc
tio

ns

SampleMPHF

16/28 Jun 17, 2024 Hermann, Lehmann, Sanders, Walzer: Mining Perfect Hash Functions Institute of Theoretical Informatics, Algorithm Engineering

ShockHash



Hybrid between RecSplit and
1-bit SicHash-MPHF

Sample random graphs

Store choice between two candidates
[DHSW22a, LSW23c]

Problem: Unlikely to work for
> n/2 edges [PR04], here we use n

ShockHash: Do it anyway, try many seeds

Orientability check?
Success probability?
Space usage?

x h0(x) h1(x)

John

Lisa

Dave

Mary

Anna

3 4

2 1

2 3

5 3

2 4

1
2

3

4

5

Retrieval
John
Lisa
Dave
Mary
Anna

0
1
0
0
1

Lisa

Mary

D
ave

John

An
na

Seed

ShockHash data structure

16/28 Jun 17, 2024 Hermann, Lehmann, Sanders, Walzer: Mining Perfect Hash Functions Institute of Theoretical Informatics, Algorithm Engineering

ShockHash



1-orientable if each component contains
no more edges than nodes

Here: Tree with one additional edge

Can be checked in linear time using
connected components algorithms

⇒ We check the 2n different states of the
retrieval data structure in linear time

17/28 Jun 17, 2024 Hermann, Lehmann, Sanders, Walzer: Mining Perfect Hash Functions Institute of Theoretical Informatics, Algorithm Engineering

Orientability Check



n2n

x h0(x) h1(x)

John

Lisa

Dave

Mary

Anna

?P ≥ ?

? ?

? ?

? ?

? ?

18/28 Jun 17, 2024 Hermann, Lehmann, Sanders, Walzer: Mining Perfect Hash Functions Institute of Theoretical Informatics, Algorithm Engineering

Success Probability



1
2

3

4

5

n2n

nn−2

Labeled trees
(Cayley’s formula)

x h0(x) h1(x)

John

Lisa

Dave

Mary

P ≥

Anna ? ?

3 4

2 1

2 3

5 3

18/28 Jun 17, 2024 Hermann, Lehmann, Sanders, Walzer: Mining Perfect Hash Functions Institute of Theoretical Informatics, Algorithm Engineering

Success Probability



1
2

3

4

5

n2n

nn−2 (n − 1)!

Labeled trees
(Cayley’s formula)

Table rows can be
in any order

x h0(x) h1(x)

John

Lisa

Dave

Mary

P ≥

Anna ? ?

Lisa

Mary

D
ave

John

3 4

2 1

2 3

5 3

18/28 Jun 17, 2024 Hermann, Lehmann, Sanders, Walzer: Mining Perfect Hash Functions Institute of Theoretical Informatics, Algorithm Engineering

Success Probability



1
2

3

4

5

n2n

nn−2 2n−1(n − 1)!

Labeled trees
(Cayley’s formula)

Table rows can be
in any order

Hash values can
be in any order

x h0(x) h1(x)

John

Lisa

Dave

Mary

P ≥

Anna ? ?

Lisa

Mary

D
ave

John

3 4

2 1

2 3

5 3

18/28 Jun 17, 2024 Hermann, Lehmann, Sanders, Walzer: Mining Perfect Hash Functions Institute of Theoretical Informatics, Algorithm Engineering

Success Probability



1
2

3

4

5

n2n

nn−2 2n−1(n − 1)! n2

Labeled trees
(Cayley’s formula)

Table rows can be
in any order

Hash values can
be in any order

Last edge can
be anything

An
na

x h0(x) h1(x)

John

Lisa

Dave

Mary

Anna

P ≥

? ?

Lisa

Mary

D
ave

John

3 4

2 1

2 3

5 3

18/28 Jun 17, 2024 Hermann, Lehmann, Sanders, Walzer: Mining Perfect Hash Functions Institute of Theoretical Informatics, Algorithm Engineering

Success Probability



1
2

3

4

5

n2n

= n!
nn · 2n−1

n

nn−2 2n−1(n − 1)! n2

Labeled trees
(Cayley’s formula)

Table rows can be
in any order

Hash values can
be in any order

Last edge can
be anything

Brute force

An
na

x h0(x) h1(x)

John

Lisa

Dave

Mary

Anna

P ≥

? ?

Lisa

Mary

D
ave

John

3 4

2 1

2 3

5 3

Almost 2n times higher
probability

18/28 Jun 17, 2024 Hermann, Lehmann, Sanders, Walzer: Mining Perfect Hash Functions Institute of Theoretical Informatics, Algorithm Engineering

Success Probability



n + o(n) bits for 1-bit retrieval.
Practice: 1.007n bits using BuRR
[DHSW22b]

Expected space for seed:

≈ log
(

n
2n−1 · nn

n!

)
≈ n log e − n bits

Together: ≈ n log e bits (optimal!)

Retrieval
John
Lisa
Dave
Mary
Anna

0
1
0
0
1

Seed

ShockHash data structure

Similar space as brute-force but nearly 2n times faster!

19/28 Jun 17, 2024 Hermann, Lehmann, Sanders, Walzer: Mining Perfect Hash Functions Institute of Theoretical Informatics, Algorithm Engineering

Space Usage



First implementation dominated by
orientability check
⇒Filter seeds that can’t work

Efficiently in registers

Filter passed with probability only 0.84n

Main ingredient for making ShockHash
feasible in practice

0 1 1 1 1
12345

1
2

3

4

5

Lisa

Mary D
ave

John

An
na

20/28 Jun 17, 2024 Hermann, Lehmann, Sanders, Walzer: Mining Perfect Hash Functions Institute of Theoretical Informatics, Algorithm Engineering

Filtering



Extension of ShockHash

Test all combinations from a set of seed
candidates

Filter halves before combining them

Brute-force: en ≈ 2.72n

⇒ ShockHash: 1.36n

⇒ Bipartite ShockHash: 1.166n

...

John

Lisa

Dave

...

Pool of candidates Pool of candidates

21/28 Jun 17, 2024 Hermann, Lehmann, Sanders, Walzer: Mining Perfect Hash Functions Institute of Theoretical Informatics, Algorithm Engineering

Bipartite ShockHash



Extension of ShockHash

Test all combinations from a set of seed
candidates

Filter halves before combining them

Brute-force: en ≈ 2.72n

⇒ ShockHash: 1.36n

⇒ Bipartite ShockHash: 1.166n

...

John

Lisa

Dave

...

Pool of candidates Pool of candidates

21/28 Jun 17, 2024 Hermann, Lehmann, Sanders, Walzer: Mining Perfect Hash Functions Institute of Theoretical Informatics, Algorithm Engineering

Bipartite ShockHash



Extension of ShockHash

Test all combinations from a set of seed
candidates

Filter halves before combining them

Brute-force: en ≈ 2.72n

⇒ ShockHash: 1.36n

⇒ Bipartite ShockHash: 1.166n

...

John

Lisa

Dave

...

Pool of candidates Pool of candidates

21/28 Jun 17, 2024 Hermann, Lehmann, Sanders, Walzer: Mining Perfect Hash Functions Institute of Theoretical Informatics, Algorithm Engineering

Bipartite ShockHash



Extension of ShockHash

Test all combinations from a set of seed
candidates

Filter halves before combining them

Brute-force: en ≈ 2.72n

⇒ ShockHash: 1.36n

⇒ Bipartite ShockHash: 1.166n

...

John

Lisa

Dave

...

Pool of candidates Pool of candidates

21/28 Jun 17, 2024 Hermann, Lehmann, Sanders, Walzer: Mining Perfect Hash Functions Institute of Theoretical Informatics, Algorithm Engineering

Bipartite ShockHash



Extension of ShockHash

Test all combinations from a set of seed
candidates

Filter halves before combining them

Brute-force: en ≈ 2.72n

⇒ ShockHash: 1.36n

⇒ Bipartite ShockHash: 1.166n

...

John

Lisa

Dave

...

Pool of candidates Pool of candidates

21/28 Jun 17, 2024 Hermann, Lehmann, Sanders, Walzer: Mining Perfect Hash Functions Institute of Theoretical Informatics, Algorithm Engineering

Bipartite ShockHash



Cuckoo hashing hard because of irregular memory access

Filtering is easy and dominates asymptotically
Hybrid implementation planned

Filtering and bit fiddling on the GPU
Cuckoo hashing on the CPU

22/28 Jun 17, 2024 Hermann, Lehmann, Sanders, Walzer: Mining Perfect Hash Functions Institute of Theoretical Informatics, Algorithm Engineering

ShockHash on the GPU



1.5 1.6 1.7 1.8 2.0 2.5 3

105

106

107

Bits/Key

C
on

st
ru

ct
io

n
th

ro
ug

hp
ut

(K
ey

s/
s) BBHash [LRCP17]

Bip. ShockHash-RS [LSW23a]
CHD [BBD09]
FMPH [Bel23]
FMPHGO [Bel23]

PHOBIC [HLP+24]
PTHash [PT21]
RecSplit [EGV20]
SIMDRecSplit [BKLS23b]
ShockHash-RS [LSW23b]
SicHash [LSW23c]

23/28 Jun 17, 2024 Hermann, Lehmann, Sanders, Walzer: Mining Perfect Hash Functions Institute of Theoretical Informatics, Algorithm Engineering

Evaluation (100M keys, single threaded)



1.5 2 2.5 3 3.5

5

10

15

20

25

Bits/Key

Q
ue

ry
Th

ro
ug

hp
ut

(M
Q

ue
rie

s/
s) BBHash [LRCP17]

Bip. ShockHash-RS [LSW23a]
CHD [BBD09]
FMPH [Bel23]
FMPHGO [Bel23]

PHOBIC [HLP+24]
PTHash [PT21]
RecSplit [EGV20]
SIMDRecSplit [BKLS23b]
ShockHash-RS [LSW23b]
SicHash [LSW23c]

24/28 Jun 17, 2024 Hermann, Lehmann, Sanders, Walzer: Mining Perfect Hash Functions Institute of Theoretical Informatics, Algorithm Engineering

Evaluation (100M keys, single threaded)



Unstructured Search Structured Search

SicHash
PH through Retrieval

Brute Force

PHOBIC

ShockHash
RecSplit
PHOBIC

25/28 Jun 17, 2024 Hermann, Lehmann, Sanders, Walzer: Mining Perfect Hash Functions Institute of Theoretical Informatics, Algorithm Engineering

Overview



A B C D E F G H I

1 2 3 4 5 6 7 8 9

Bucket

E
xp

ec
te

d
S

iz
e

Uniform [BBD09]

26/28 Jun 17, 2024 Hermann, Lehmann, Sanders, Walzer: Mining Perfect Hash Functions Institute of Theoretical Informatics, Algorithm Engineering

State-of-the-art [BBD09, FCH92, PT21]



Choose a number of buckets proportional to
the number of keys

Distribute keys to buckets using random
hash function

For each bucket: Search for a seed such
that there are no collisions

A B C D E F G H I

1 2 3 4 5 6 7 8 9

Bucket

E
xp

ec
te

d
S

iz
e

Uniform [BBD09]

26/28 Jun 17, 2024 Hermann, Lehmann, Sanders, Walzer: Mining Perfect Hash Functions Institute of Theoretical Informatics, Algorithm Engineering

State-of-the-art [BBD09, FCH92, PT21]



Choose a number of buckets proportional to
the number of keys

Distribute keys to buckets using random
hash function

For each bucket: Search for a seed such
that there are no collisions

A B C D E F G H I

1 2 3 4 5 6 7 8 9

Bucket

E
xp

ec
te

d
S

iz
e

Uniform [BBD09]

26/28 Jun 17, 2024 Hermann, Lehmann, Sanders, Walzer: Mining Perfect Hash Functions Institute of Theoretical Informatics, Algorithm Engineering

State-of-the-art [BBD09, FCH92, PT21]



Choose a number of buckets proportional to
the number of keys

Distribute keys to buckets using random
hash function

For each bucket: Search for a seed such
that there are no collisions

B C D E F G H I

1 2 3 4 5 6 7 8 9

A

Bucket

E
xp

ec
te

d
S

iz
e

Uniform [BBD09]

26/28 Jun 17, 2024 Hermann, Lehmann, Sanders, Walzer: Mining Perfect Hash Functions Institute of Theoretical Informatics, Algorithm Engineering

State-of-the-art [BBD09, FCH92, PT21]



Choose a number of buckets proportional to
the number of keys

Distribute keys to buckets using random
hash function

For each bucket: Search for a seed such
that there are no collisions

1 2 3 4 5 6 7 8 9

AB CDE FG
H I

Bucket

E
xp

ec
te

d
S

iz
e

Uniform [BBD09]

26/28 Jun 17, 2024 Hermann, Lehmann, Sanders, Walzer: Mining Perfect Hash Functions Institute of Theoretical Informatics, Algorithm Engineering

State-of-the-art [BBD09, FCH92, PT21]



Choose a number of buckets proportional to
the number of keys

Distribute keys to buckets using random
hash function

For each bucket: Search for a seed such
that there are no collisions

1 2 3 4 5 6 7 8 9

AB CDE FG
H I

B HE

s0 = 0

Bucket

E
xp

ec
te

d
S

iz
e

Uniform [BBD09]

26/28 Jun 17, 2024 Hermann, Lehmann, Sanders, Walzer: Mining Perfect Hash Functions Institute of Theoretical Informatics, Algorithm Engineering

State-of-the-art [BBD09, FCH92, PT21]



Choose a number of buckets proportional to
the number of keys

Distribute keys to buckets using random
hash function

For each bucket: Search for a seed such
that there are no collisions

1 2 3 4 5 6 7 8 9

AB CDE FG
H I

B HE

s0 = 0

%

s1 = 0

Bucket

E
xp

ec
te

d
S

iz
e

Uniform [BBD09]

26/28 Jun 17, 2024 Hermann, Lehmann, Sanders, Walzer: Mining Perfect Hash Functions Institute of Theoretical Informatics, Algorithm Engineering

State-of-the-art [BBD09, FCH92, PT21]



Choose a number of buckets proportional to
the number of keys

Distribute keys to buckets using random
hash function

For each bucket: Search for a seed such
that there are no collisions

1 2 3 4 5 6 7 8 9

AB CDE FG
H I

B HE

s0 = 0 s1 = 1

D GI

Bucket

E
xp

ec
te

d
S

iz
e

Uniform [BBD09]

26/28 Jun 17, 2024 Hermann, Lehmann, Sanders, Walzer: Mining Perfect Hash Functions Institute of Theoretical Informatics, Algorithm Engineering

State-of-the-art [BBD09, FCH92, PT21]



Choose a number of buckets proportional to
the number of keys

Distribute keys to buckets using random
hash function

For each bucket: Search for a seed such
that there are no collisions

1 2 3 4 5 6 7 8 9

AB CDE FG
H I

B HE

s0 = 0 s1 = 1

D GI

s2 = 3 s3 = 2 s4 = 0

A F C

Bucket

E
xp

ec
te

d
S

iz
e

Uniform [BBD09]

26/28 Jun 17, 2024 Hermann, Lehmann, Sanders, Walzer: Mining Perfect Hash Functions Institute of Theoretical Informatics, Algorithm Engineering

State-of-the-art [BBD09, FCH92, PT21]



The first buckets are easier to insert

Therefore insert in non-increasing size

Exaggerating this effect by intentionally
making some buckets even larger is helpful

Previous state-of-the-art was to make 30%
of the buckets larger

We determined optimal bucket sizes

idea: buckets should have the same
success probability in expectation

− 1
ln(1−x)

AB CDE FG
H I

Bucket
E

xp
ec

te
d

S
iz

e

Uniform [BBD09]

26/28 Jun 17, 2024 Hermann, Lehmann, Sanders, Walzer: Mining Perfect Hash Functions Institute of Theoretical Informatics, Algorithm Engineering

State-of-the-art [BBD09, FCH92, PT21]



The first buckets are easier to insert

Therefore insert in non-increasing size

Exaggerating this effect by intentionally
making some buckets even larger is helpful

Previous state-of-the-art was to make 30%
of the buckets larger

We determined optimal bucket sizes

idea: buckets should have the same
success probability in expectation

− 1
ln(1−x)

B
HE D

G

I
A

F

C

Bucket
E

xp
ec

te
d

S
iz

e

Uniform [BBD09]
Skewed [FCH92, PT21]

26/28 Jun 17, 2024 Hermann, Lehmann, Sanders, Walzer: Mining Perfect Hash Functions Institute of Theoretical Informatics, Algorithm Engineering

State-of-the-art [BBD09, FCH92, PT21]



The first buckets are easier to insert

Therefore insert in non-increasing size

Exaggerating this effect by intentionally
making some buckets even larger is helpful

Previous state-of-the-art was to make 30%
of the buckets larger

We determined optimal bucket sizes
idea: buckets should have the same
success probability in expectation

− 1
ln(1−x)

B

H
E

D
G

I
A

F
C

Bucket
E

xp
ec

te
d

S
iz

e

Uniform [BBD09]
Skewed [FCH92, PT21]

Optimized [HLP+24]

26/28 Jun 17, 2024 Hermann, Lehmann, Sanders, Walzer: Mining Perfect Hash Functions Institute of Theoretical Informatics, Algorithm Engineering

PHOBIC [HLP+24]



Threads try different seeds

Groups of threads work on different
partitions

MIMD on SIMD emulation [San94]

62x Speedup

Threads

Ti
m

e

"

$

Threads

$

$

$

$

$

$

$ $

$

$ $

$

$

$

$

$

$

$$

$$

$

$

Emulated MIMDNested Loop

27/28 Jun 17, 2024 Hermann, Lehmann, Sanders, Walzer: Mining Perfect Hash Functions Institute of Theoretical Informatics, Algorithm Engineering

PHOBIC on GPU



Unstructured Search Structured Search

SicHash
PH through Retrieval

Brute Force

PHOBIC

ShockHash
RecSplit

Tradeoff between space efficient brute-force and larger linear time algorithms
Engineering wide range of tradeoffs
Supported by GPUs and parallelization
Future work

Combine ShockHash and PHOBIC
Hybrid ShockHash GPU implementation
How close can we get to the optimal space without construction time deteriorating?
More use of data structures to accelerate search
Hardness proofs for achieving lower bound (+O(1)) ?
Better performance (construction and query) when more bits are allowed (3–8)

28/28 Jun 17, 2024 Hermann, Lehmann, Sanders, Walzer: Mining Perfect Hash Functions Institute of Theoretical Informatics, Algorithm Engineering

Conclusion



This project has received funding from the European Research Council
(ERC) under the European Union’s Horizon 2020 research and
innovation programme (grant agreement No. 882500).

[BBD09] Djamal Belazzougui, Fabiano C. Botelho, and Martin Dietzfelbinger.
Hash, displace, and compress.
In ESA, volume 5757 of Lecture Notes in Computer Science, pages 682–693. Springer, 2009.

[Bel23] Piotr Beling.
Fingerprinting-based minimal perfect hashing revisited.
ACM Journal of Experimental Algorithmics, 2023.

[BKLS23a] Dominik Bez, Florian Kurpicz, Hans-Peter Lehmann, and Peter Sanders.
High performance construction of RecSplit based minimal perfect hash functions.
In ESA, volume 274 of LIPIcs, pages 19:1–19:16. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2023.

[BKLS23b] Dominik Bez, Florian Kurpicz, Hans-Peter Lehmann, and Peter Sanders.
High performance construction of recsplit based minimal perfect hash functions.
In ESA, volume 274 of LIPIcs, pages 19:1–19:16. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2023.

[DGM+10] Martin Dietzfelbinger, Andreas Goerdt, Michael Mitzenmacher, Andrea Montanari, Rasmus Pagh, and Michael Rink.
Tight thresholds for cuckoo hashing via XORSAT.
In ICALP (1), volume 6198 of Lecture Notes in Computer Science, pages 213–225. Springer, 2010.

[DHSW22a] Peter C. Dillinger, Lorenz Hübschle-Schneider, Peter Sanders, and Stefan Walzer.
Fast succinct retrieval and approximate membership using ribbon.
In SEA, volume 233 of LIPIcs, pages 4:1–4:20. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2022.

29/28 Jun 17, 2024 Hermann, Lehmann, Sanders, Walzer: Mining Perfect Hash Functions Institute of Theoretical Informatics, Algorithm Engineering

References I



[DHSW22b] Peter C. Dillinger, Lorenz Hübschle-Schneider, Peter Sanders, and Stefan Walzer.
Fast succinct retrieval and approximate membership using ribbon.
In SEA, volume 233 of LIPIcs, pages 4:1–4:20. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2022.

[EGV20] Emmanuel Esposito, Thomas Mueller Graf, and Sebastiano Vigna.
RecSplit: Minimal perfect hashing via recursive splitting.
In ALENEX, pages 175–185. SIAM, 2020.

[FCH92] Edward A. Fox, Qi Fan Chen, and Lenwood S. Heath.
A faster algorithm for constructing minimal perfect hash functions.
In SIGIR, pages 266–273. ACM, 1992.

[HLP+24] Stefan Hermann, Hans-Peter Lehmann, Giulio Ermanno Pibiri, Peter Sanders, and Stefan Walzer.
Phobic: Perfect hashing with optimized bucket sizes and interleaved coding.
arXiv preprint arXiv:2404.18497, 2024.

[LRCP17] Antoine Limasset, Guillaume Rizk, Rayan Chikhi, and Pierre Peterlongo.
Fast and scalable minimal perfect hashing for massive key sets.
In SEA, volume 75 of LIPIcs, pages 25:1–25:16. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2017.

[LSW23a] Hans-Peter Lehmann, Peter Sanders, and Stefan Walzer.
Bipartite ShockHash: Pruning ShockHash search for efficient perfect hashing.
CoRR, abs/2310.14959, 2023.

[LSW23b] Hans-Peter Lehmann, Peter Sanders, and Stefan Walzer.
ShockHash: Towards optimal-space minimal perfect hashing beyond brute-force.
CoRR, abs/2308.09561, 2023.

[LSW23c] Hans-Peter Lehmann, Peter Sanders, and Stefan Walzer.
Sichash - small irregular cuckoo tables for perfect hashing.
In ALENEX, pages 176–189. SIAM, 2023.

30/28 Jun 17, 2024 Hermann, Lehmann, Sanders, Walzer: Mining Perfect Hash Functions Institute of Theoretical Informatics, Algorithm Engineering

References II



[PR04] Rasmus Pagh and Flemming Friche Rodler.
Cuckoo hashing.
J. Algorithms, 51(2):122–144, 2004.

[PT21] Giulio Ermanno Pibiri and Roberto Trani.
PTHash: Revisiting FCH minimal perfect hashing.
In SIGIR, pages 1339–1348. ACM, 2021.

[San94] P. Sanders.
Emulating MIMD behavior on SIMD machines.
In International Conference Massively Parallel Processing Applications and Development, pages 313–321, Delft, 1994. Elsevier.

31/28 Jun 17, 2024 Hermann, Lehmann, Sanders, Walzer: Mining Perfect Hash Functions Institute of Theoretical Informatics, Algorithm Engineering

References III


	Introduction
	RecSplit
	SicHash
	ShockHash
	Evaluation
	PHOBIC hermann2024phobic
	Conclusion
	

