
  

Successor Queries in Optimal External-
Memory Dictionaries

Rob Johnson
VMware Research Group



  

What is a dictionary?

Dictionary

Insert(k, v)

Query(k)
v

Successor(k)
k’

Scan(k, L) = return the L successors of k



Dictionary Performance Trade-Offs

Inserts
Point Queries

&
Scans



  

The research program
● Make insertions as fast as possible

● While preserving fast point queries

● And “reasonable” successor queries.



  

[Aggarwal & Vitter ‘88]
The Disk Access Machine (DAM) Model

Cache Disk
 M 

Block

Block
 B 

Algorithm design goal: minimize number of block transfers



  

B-trees were long thought to be optimal
[Bayer & McCreight ‘70]

.   .   .

.  .  .  .  .

Fanout = Θ(B)
Θ(logBN)

Insertions
Queries
Successors

Θ(logBN) I/Os} Scans: Θ(L/B + logBN) I/Os

.  .  . .  .  .



  

The Brodal-Fagerberg bounds
[Brodal & Fagerberg ‘03]

*Some conditions apply

τ

Query cost

logB
N
M

logB
N
M

B-tree

1
log3 N

log1+ϵ N
B

logτ B
N
M

Bε-tree

1
B

log M
B

N
M

N /M
(M /B)O (τ B)

Truncated
Buffer
Tree

Classic B-tree

Much faster insertions, 
still logarithmic 

queries
🙂

Poly-time 
queries
☹️

Queries: 

Inserts: τ

f (τ)

Atomic key 
comparison-
based bounds

No hashing



  

The Brodal-Fagerberg bounds
[Brodal & Fagerberg ‘03]

*Some conditions apply

τ

Query cost

logB
N
M

logB
N
M

B-tree

1
log3 N

log1+ϵ N
B

logτ B
N
M

Bε-tree

1
B

log M
B

N
M

N /M
(M /B)O (τ B)

Truncated
Buffer
Tree

Classic B-tree

Much faster insertions, 
still logarithmic 

queries
🙂

Poly-time 
queries
☹️

Queries: 

Inserts: τ

f (τ)

Atomic key 
comparison-
based bounds

No hashing



  

Bε-trees meet the Brodal-Fagerberg bound

.   .   .
Fanout = Θ(F)

Θ (logF N )

F pivots
B-F buffer spacek1 k2 k3

Insertions: Θ( F logF N
B ) Queries

Successors}Θ (logF N )

*Some conditions apply

Scans: Θ ( L /B+ logF N )

.  .  .  .  ..  .  . .  .  .

Move items down the 
tree in batches of 

average size Θ(B/F) F=o(B)



  

Bε-tree asymptotics

Fanout Insertions Point 
queries Scans

F logFN L/B+logFN

Bε

logBN L/B+logBN

logτBN L/B+logτBN

logB N
ϵB1−ϵ

logB N
√B

logB N
ϵ L /B+

logB N
ϵ

√B

τ B
log N τ

F logF N
B

Assuming τ≥ log1+ϵ N
B



  

The Iacono-Pătrașcu bounds

*Some conditions apply

τ

Query cost

Bε-tree

log1+ϵ N
B

1−ϵlog log N
B

logτ B N

IP hash table

[Iacono & Pătrașcu ‘11]

Non-atomic 
key model

Hashing 
allowed

Queries: 

Inserts: τ

log τB N

Bundle of trees٭

[Conway, Farach-Colton, Shilane ‘18]٭

Successor 
queries cost

Θ(N/B)
☹️

Successor 
queries cost
O(logτBN)

log N
B log log N

Mapped
Bε-tree

Successor 
queries cost
O(τBlogτBN)



  

Size-tiered Bε-trees
Faster inserts, slower queries

[Jagadish, Narayan, Seshadri, Sudarshan, Kanneganti ‘97]



  

Bε-tree node

Size-tiered Bε-tree nodes

Buffer space

Pivots

B-F

F

Size-tiered Bε-tree node

Pivots

Buffer
Buffer

Buffer
︙

B

F

Fanout = Θ(F)

Flush Θ(B) items by 
performing O(F) I/Os

This will enable us to 
flush Θ(FB) items by 
performing Θ(F) I/Os



  

Flushes in size-tiered Bε-trees

Pivots

Buffer
Buffer

Buffer
︙

Pivots

Buffer
Buffer

Buffer
︙

Pivots

Buffer
Buffer

Buffer
︙

Buffer Buffer Buffer…Merge



  

Analysis: Flushes in size-tiered Bε-trees

Pivots

Buffer
Buffer

Buffer
︙

Pivots

Buffer
Buffer

Buffer
︙

Pivots

Buffer
Buffer

Buffer
︙

Buffer Buffer Buffer…Merge



  

Analysis: Flushes in size-tiered Bε-trees

Pivots

Buffer
Buffer

Buffer
︙

Pivots

Buffer
Buffer

Buffer
︙

Pivots

Buffer
Buffer

Buffer
︙

Buffer Buffer Buffer…Merge

These 
buffers 

untouched

Flush Θ(FB) 
items using Θ(F) 

I/Os



  

Analysis: Insertions in size-tiered Bε-trees

Pivots
Buffer
Buffer

Buffer
︙

Pivots
Buffer
Buffer

Buffer
︙

Pivots
Buffer
Buffer

Buffer
︙

Pivots
Buffer
Buffer

Buffer
︙

Pivots
Buffer
Buffer

Buffer
︙

Pivots
Buffer
Buffer

Buffer
︙

Pivots
Buffer
Buffer

Buffer
︙

Θ (logF N )

Fanout Θ(F)

Insertions: Θ( logF N
B )

Flush Θ(FB) 
items using Θ(F) 

I/Os



  

Analysis: I/O costs in size-tiered Bε-trees

Pivots
Buffer
Buffer

Buffer
︙

Pivots
Buffer
Buffer

Buffer
︙

Pivots
Buffer
Buffer

Buffer
︙

Pivots
Buffer
Buffer

Buffer
︙

Pivots
Buffer
Buffer

Buffer
︙

Pivots
Buffer
Buffer

Buffer
︙

Pivots
Buffer
Buffer

Buffer
︙

Θ (logF N )

Fanout Θ(F)

Insertions: Θ( logF N
B )

Flush Θ(FB) 
items using Θ(F) 

I/Os

Point queries: Θ ( F logF N )

Scans: Θ ( L/B+F logF N )



  

Maplets and mapped Bε-trees
Fixing queries



Maplets
● Maplets extend filters from sets to maps

– maplet_query(k) → { v1, v2, …, vℓ }
● Maplets save space by allowing false 

positives
– False positives are extra values in a query result
– False-positive rate = E[# of extra values]

● Basic implementation:
– Store a ordered linear-probing hash table of 

(h(k), v) pairs
– Compress table using quotienting [Knuth 1973]

i h(k) v
0 05 5
1 - -
2 21 3
3 28 7
4 28 9
5 - -
6 67 2

maplet_query(“Knuth”)

h(“Knuth”) = 28

Result: {7, 9}

[Conway, Farach-Colton, Johnson 2023]

Queries need 
O(1) I/Os 

w.h.p.



  

Mapped buffered B-tree node

Mapped Bε-tree nodes

Pivots

Buffer
Buffer

Buffer
︙

B

F

Fanout = Θ(F)

Maplet

Maplet: k → { buffers containing k }



  

Mapped buffered B-tree node

Queries in mapped Bε-trees

Pivots

Buffer
Buffer

Buffer
︙

B

F

Fanout = Θ(F)

Maplet

Maplet: k → { buffers containing k }



  

Mapped buffered B-tree node

Queries in mapped Bε-trees

Pivots

Buffer
Buffer

Buffer
︙

B

F

Fanout = Θ(F)

Maplet

Queries access O(1) 
blocks in each node

Maplet: k → { buffers containing k }

Point queries: Θ ( logF N )
Scans: Θ ( L/B+F logF N )



  

Mapped buffered B-tree node

Flushes in mapped Bε-trees

Pivots

Buffer
Buffer

Buffer
︙

B

F

Fanout = Θ(F)

Maplet

Maplet: k → { buffers containing k }
Must update 
maplet after 
every flush

Theorem: Mapped Bε-tree meets IP 
lower bound when 

F=Ω(log N / log log N).

Maplet maintenance not a 
bottleneck to optimality or 

in practice



  

Summary of theoretical results

OptimalInsert Cost Query Cost

Down to
Ω(log N / B log log N)

Sublinear 
Successor Cost

O(F logF N)

logarithmic in N



  

Empirical performance measurements

B-tree Mapped Bε-tree



Random inserts

1 client inserting
1 billion random rows

Higher throughput is 
better.

SplinterDB is 18x
faster than B-Tree

SplinterDB throughput 
fluctuates due to flushes

SplinterDB is ~50% slower 
than no-index at all

AWS i4i.16xlarge: 
64 CPUs, fast local storage



Random Point Queries

1 Billion row table
with unique index.

AWS i4i.16xlarge: 
64 CPUs, fast local storage



Scans

Scans on a 
1 billion row table, 
from a cold cache

Scanning >= 100k 
rows, Splinter is ~50% 
faster than B-Tree.

Scanning <= 1000 rows, 
Splinter adds 1-5ms extra 
latency compared to B-Tree

AWS i4i.16xlarge: 
64 CPUs, fast local storage



Open Questions
Can we get insertion costs 
below log N / B log log N 
while keeping sublinear 

successor queries?
● Maplets are not the 

bottleneck

Can we improve successor 
query costs?

● Range maplets?
● Fractional cascading?

Successor lower bounds?


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Bulk loading of data from 1 client (4)
	Point lookups: SplinterDB and B-tree are evenly matched
	Short Range Scans are Slower, Long Scans are Faster
	Slide 31

