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What is a dictionary?

Dictionary

Insert(k, v)

Query(k)
v

Successor(k)
k’

Scan(k, L) = return the L successors of k



Dictionary Performance Trade-Offs

Inserts
Point Queries

&
Scans



  

The research program
● Make insertions as fast as possible

● While preserving fast point queries

● And “reasonable” successor queries.



  

[Aggarwal & Vitter ‘88]
The Disk Access Machine (DAM) Model

Cache Disk
 M 

Block

Block
 B 

Algorithm design goal: minimize number of block transfers



  

B-trees were long thought to be optimal
[Bayer & McCreight ‘70]

.   .   .

.  .  .  .  .

Fanout = Θ(B)
Θ(logBN)

Insertions
Queries
Successors

Θ(logBN) I/Os} Scans: Θ(L/B + logBN) I/Os

.  .  . .  .  .



  

The Brodal-Fagerberg bounds
[Brodal & Fagerberg ‘03]

*Some conditions apply
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Atomic key 
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No hashing
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Bε-trees meet the Brodal-Fagerberg bound

.   .   .
Fanout = Θ(F)

Θ (logF N )

F pivots
B-F buffer spacek1 k2 k3

Insertions: Θ( F logF N
B ) Queries

Successors}Θ (logF N )

*Some conditions apply

Scans: Θ ( L /B+ logF N )

.  .  .  .  ..  .  . .  .  .

Move items down the 
tree in batches of 

average size Θ(B/F) F=o(B)



  

Bε-tree asymptotics

Fanout Insertions Point 
queries Scans

F logFN L/B+logFN

Bε

logBN L/B+logBN

logτBN L/B+logτBN

logB N
ϵB1−ϵ

logB N
√B

logB N
ϵ L /B+

logB N
ϵ

√B

τ B
log N τ

F logF N
B

Assuming τ≥ log1+ϵ N
B



  

The Iacono-Pătrașcu bounds

*Some conditions apply

τ

Query cost

Bε-tree

log1+ϵ N
B

1−ϵlog log N
B

logτ B N

IP hash table

[Iacono & Pătrașcu ‘11]

Non-atomic 
key model

Hashing 
allowed

Queries: 

Inserts: τ

log τB N

Bundle of trees٭

[Conway, Farach-Colton, Shilane ‘18]٭

Successor 
queries cost

Θ(N/B)
☹️

Successor 
queries cost
O(logτBN)

log N
B log log N

Mapped
Bε-tree

Successor 
queries cost
O(τBlogτBN)



  

Size-tiered Bε-trees
Faster inserts, slower queries

[Jagadish, Narayan, Seshadri, Sudarshan, Kanneganti ‘97]



  

Bε-tree node

Size-tiered Bε-tree nodes

Buffer space

Pivots

B-F

F

Size-tiered Bε-tree node

Pivots

Buffer
Buffer

Buffer
︙

B

F

Fanout = Θ(F)

Flush Θ(B) items by 
performing O(F) I/Os

This will enable us to 
flush Θ(FB) items by 
performing Θ(F) I/Os



  

Flushes in size-tiered Bε-trees

Pivots

Buffer
Buffer

Buffer
︙

Pivots

Buffer
Buffer

Buffer
︙

Pivots

Buffer
Buffer

Buffer
︙

Buffer Buffer Buffer…Merge



  

Analysis: Flushes in size-tiered Bε-trees

Pivots

Buffer
Buffer

Buffer
︙

Pivots

Buffer
Buffer

Buffer
︙

Pivots

Buffer
Buffer
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Analysis: Flushes in size-tiered Bε-trees

Pivots

Buffer
Buffer

Buffer
︙

Pivots

Buffer
Buffer

Buffer
︙

Pivots

Buffer
Buffer

Buffer
︙

Buffer Buffer Buffer…Merge

These 
buffers 

untouched

Flush Θ(FB) 
items using Θ(F) 

I/Os



  

Analysis: Insertions in size-tiered Bε-trees

Pivots
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I/Os



  

Analysis: I/O costs in size-tiered Bε-trees

Pivots
Buffer
Buffer
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Insertions: Θ( logF N
B )

Flush Θ(FB) 
items using Θ(F) 

I/Os

Point queries: Θ ( F logF N )

Scans: Θ ( L/B+F logF N )



  

Maplets and mapped Bε-trees
Fixing queries



Maplets
● Maplets extend filters from sets to maps

– maplet_query(k) → { v1, v2, …, vℓ }
● Maplets save space by allowing false 

positives
– False positives are extra values in a query result
– False-positive rate = E[# of extra values]

● Basic implementation:
– Store a ordered linear-probing hash table of 

(h(k), v) pairs
– Compress table using quotienting [Knuth 1973]

i h(k) v
0 05 5
1 - -
2 21 3
3 28 7
4 28 9
5 - -
6 67 2

maplet_query(“Knuth”)

h(“Knuth”) = 28

Result: {7, 9}

[Conway, Farach-Colton, Johnson 2023]

Queries need 
O(1) I/Os 

w.h.p.



  

Mapped buffered B-tree node

Mapped Bε-tree nodes

Pivots

Buffer
Buffer

Buffer
︙

B

F

Fanout = Θ(F)

Maplet

Maplet: k → { buffers containing k }



  

Mapped buffered B-tree node

Queries in mapped Bε-trees

Pivots

Buffer
Buffer

Buffer
︙

B

F

Fanout = Θ(F)

Maplet

Maplet: k → { buffers containing k }



  

Mapped buffered B-tree node

Queries in mapped Bε-trees

Pivots

Buffer
Buffer

Buffer
︙

B

F

Fanout = Θ(F)

Maplet

Queries access O(1) 
blocks in each node

Maplet: k → { buffers containing k }

Point queries: Θ ( logF N )
Scans: Θ ( L/B+F logF N )



  

Mapped buffered B-tree node

Flushes in mapped Bε-trees

Pivots

Buffer
Buffer

Buffer
︙

B

F

Fanout = Θ(F)

Maplet

Maplet: k → { buffers containing k }
Must update 
maplet after 
every flush

Theorem: Mapped Bε-tree meets IP 
lower bound when 

F=Ω(log N / log log N).

Maplet maintenance not a 
bottleneck to optimality or 

in practice



  

Summary of theoretical results

OptimalInsert Cost Query Cost

Down to
Ω(log N / B log log N)

Sublinear 
Successor Cost

O(F logF N)

logarithmic in N



  

Empirical performance measurements

B-tree Mapped Bε-tree



Random inserts

1 client inserting
1 billion random rows

Higher throughput is 
better.

SplinterDB is 18x
faster than B-Tree

SplinterDB throughput 
fluctuates due to flushes

SplinterDB is ~50% slower 
than no-index at all

AWS i4i.16xlarge: 
64 CPUs, fast local storage



Random Point Queries

1 Billion row table
with unique index.

AWS i4i.16xlarge: 
64 CPUs, fast local storage



Scans

Scans on a 
1 billion row table, 
from a cold cache

Scanning >= 100k 
rows, Splinter is ~50% 
faster than B-Tree.

Scanning <= 1000 rows, 
Splinter adds 1-5ms extra 
latency compared to B-Tree

AWS i4i.16xlarge: 
64 CPUs, fast local storage



Open Questions
Can we get insertion costs 
below log N / B log log N 
while keeping sublinear 

successor queries?
● Maplets are not the 

bottleneck

Can we improve successor 
query costs?

● Range maplets?
● Fractional cascading?

Successor lower bounds?
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