Successor Queries in Optimal External-Memory Dictionaries

Rob Johnson VMware Research Group

What is a dictionary?

Dictionary Performance Trade-Offs

The research program

Make insertions as fast as possible

While preserving fast point queries

• And "reasonable" successor queries.

The Disk Access Machine (DAM) Model [Aggarwal & Vitter '88]

Algorithm design goal: minimize number of block transfers

B-trees were long thought to be optimal

[Bayer & McCreight '70]

Insertions
Queries
Successors $\Theta(\log_B N) \text{ I/Os}$

Scans: $\Theta(L/B + \log_B N)$ I/Os

The Brodal-Fagerberg bounds [Brodal & Fagerberg '03]

Atomic key comparison-based bounds

No hashing

Inserts: τ Queries: $f(\tau)$

*Some conditions apply

The Brodal-Fagerberg bounds [Brodal & Fagerberg '03]

Atomic key comparison-based bounds

No hashing

Inserts: τ Queries: $f(\tau)$

*Some conditions apply

B^ε-trees meet the Brodal-Fagerberg bound

Insertions: $\Theta\left(\frac{F\log_F N}{B}\right)$ Queries Successors $\Theta\left(\log_F N\right)$

Scans: $\Theta(L/B + \log_F N)$

B^ε-tree asymptotics

Fanout	Insertions	Point queries	Scans
F	$\frac{F\log_F N}{B}$	$\log_{F}N$	$L/B + \log_F N$
$B^arepsilon$	$\frac{\log_B N}{\epsilon B^{1-\epsilon}}$	$rac{\log_{\scriptscriptstyle B} N}{\epsilon}$	$L/B + \frac{\log_B N}{\epsilon}$
\sqrt{B}	$rac{\log_B N}{\sqrt{B}}$	$\log_{B}N$	$L/B + \log_B N$
$\frac{ au B}{\log N}$	τ	$\log_{ au B}\!N$	L/B + $\log_{\tau B}N$

Assuming $\tau \ge \frac{\log^{1+\epsilon} N}{B}$

The Iacono-Pătrașcu bounds

[Iacono & Pătrașcu '11]

Non-atomic key model

Hashing allowed

Inserts: τ \downarrow Queries: $\log_{\tau B} N$

Size-tiered B^{ϵ} -trees Faster inserts, slower queries

Size-tiered B^ε-tree nodes

Flushes in size-tiered B^ε-trees

Analysis: Flushes in size-tiered B^ε-trees

Analysis: Flushes in size-tiered B^ε-trees

Analysis: Insertions in size-tiered B^ε-trees

Analysis: I/O costs in size-tiered B^ε-trees

Maplets and mapped B^ε-trees Fixing queries

Maplets

- Maplets extend filters from **sets** to **maps**
 - maplet_query(k) → { v_1 , v_2 , ..., v_ℓ }
- Maplets save space by allowing false positives
 - False positives are extra values in a query result
 - False-positive rate = E[# of extra values]

- Basic implementation:
 - Store a ordered linear-probing hash table of (h(k), v) pairs
 - Compress table using *quotienting* [Knuth 1973]

Mapped B^ε-tree nodes

Maplet: $k \rightarrow \{ \text{ buffers containing } k \}$

Queries in mapped B^ε-trees

Maplet: $k \rightarrow \{ \text{ buffers containing } k \}$

Queries in mapped B^ε-trees

Flushes in mapped B^ε-trees

Maplet: $k \rightarrow \{ \text{ buffers containing } k \}$

Maplet maintenance not a bottleneck to optimality or in practice

Theorem: Mapped B^{ϵ}-tree meets IP lower bound when $F=\Omega(\log N/\log\log N)$.

Summary of theoretical results

Empirical performance measurements

B-tree

Mapped B^ε-tree

Random inserts

Random Point Queries

AWS i4i.16xlarge: 64 CPUs, fast local storage

1 Billion row table with unique index.

Scans

Scanning >= 100k rows, Splinter is ~50% faster than B-Tree.

Open Questions

Can we get insertion costs below log *N* / *B* log log *N* while keeping sublinear successor queries?

Maplets are not the bottleneck

Can we improve successor query costs?

- Range maplets?
- Fractional cascading?

Successor lower bounds?