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Packed Memory Arrays
PMA is an ordered dictionary data structure built on a contiguous array [Itai+ 81]

Stores N elements in sorted order in O(N) space

Inserts and deletes in amortized O(log2(N))

Point queries in O(log(N))

Extremely efficient scans due to contiguous memory

𝚹(log(n)) 𝚹(log(n)) 𝚹(log(n)) 𝚹(log(n)) 𝚹(log(n)) 𝚹(log(n)) 𝚹(log(n)) 𝚹(log(n))

2



PMA theoretical behavior

Operation Binary Tree B-Tree PMA

Insert O(log(n)) O(logB(n)) O(log2(n))

Contains O(log(n)) O(logB(n)) O(log(n))

Scan O(n) O(n/B) O(n/B)

Size O(n) O(n) O(n)
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Baseline PMA Performance Summary
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PMA Empirical Behavior

Excellent scans, 2x faster than B-Trees

Three issues

1. Bigger than B-Trees
2. Slower point queries
3. Slower insertions 
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We are going to fix these in three steps

1. First speed up point queries, which will improve serial inserts
2. Add parallel batch inserts to speed up inserts even more
3. Decrease the size



Search Optimized PMA (SPMA) Performance
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Searching in a PMA

Perform a binary search on the first element of each leaf (leaf head)

Search inside the leaf for the element

Searching ends up being a major part of insert as well
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Searching in a PMA

Initially each step of the binary search is a cache miss

At equilibrium the top of the possible binary search tree will be in cache

However, for cache line of size B only the first element in useful

So for a cache of size M we get M/B useful elements

So the first log(M/B) steps of the search will likely be in cache
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Search Optimized PMA (SPMA)

Move the leaf heads to a separate array to enable faster queries

Maintain a mapping between the two structures 

For more information see Optimizing Search Layouts in Packed Memory Arrays
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https://scholar.google.com/scholar?oi=bibs&cluster=6972134254436708037&btnI=1&hl=en


Searching in a SPMA - Linear

On the first search the last few steps of the search are now in the same cache line

But we need to pay to load the data

So we save log(B) steps of the search at the bottom

At equilibrium the top of the possible binary search tree will be in cache

So the first log(M/B) steps and the last log(B) of the search will be in cache
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SPMA - Linear Performance
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SPMA Memory Usage

The smaller head structure 
can also remain in cache 
for larger structures 
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SPMA - Eytzinger [Eytzinger 1590]

This makes the unpredictable jumps through the array nearly perfectly predictable

After cell i, the options are 2i or 2i+1, this allows the prefetcher to collect the data

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14Linear Order

7 3 11 1 5 9 13 0 2 4 6 8 10 12 14Eytzinger Order
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SPMA - Eytzinger Performance

14



SPMA - BTree [Khuong 17]

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

3 7 11 0 1 2 4 5 6 8 9 10 12 13 14

Group multiple levels of what will be part of the main binary search tree together

Each cache line fetch grabs log(B) levels, dividing the total cost by log(B)

Linear Order

BTree Order
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Asymptotic performance of SPMAs

Data Structure Search Insert Range Query

PMA O(lg(n/M)) O(lg(n/M) + lg2(n)/B) O(lg(n/M) + k/B)

SPMA-Linear O(lg(n/MB)) O(lg(n/MB) + lg2(n)/B) O(lg(n/MB) + k/B)

SPMA-Eytzinger O(lg(n/M)) O(lg(n/M) + lg2(n)/B) O(lg(n/M) + k/B)

SPMA-Btree O(logB(n/M)) O(logB(n/M) + lg2(n)/B) O(logB(n/M) + k/B)

B-Tree O(logB(n/M)) O(logB(n/M)) O(logB(n/M) + k/B)
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SPMA - BTree Performance
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Parallel Batch Inserts - Overview
1. Batch merge

a. Merge elements into the PMA
2. Counting nodes

a. Determine which regions of the PMA need to be rebalanced
3. Redistribute nodes

a. Rebalance the required regions 

For more information see CPMA: An efficient batch-parallel compressed set without pointers 
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https://dl.acm.org/doi/abs/10.1145/3627535.3638492


Review Inserts in Packed Memory Arrays

An insert (or delete) is broken into 4 
steps

1. Search for which leaf the 
element will go into

2. Place the element into the leaf 
shifting around nearby elements

3. Count to determine the region to 
redistribute

4. Redistribute the required region 

7 13 - - 15 19 89 -

7 13 - - 15 19 22 89

7 13 15 - 19 22 89 -

(1) Search (22)

(2) Place (22)

(3) Count
0.5 ✓ 1.0 ❌

0.75 
✓ 

0.75 
✓ 

(4) Redistribute
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1 5 - - 6 9 - - 10 14 - - 15 17 - -7 8 9

Parallel Batch Inserts - Batch Merge
 

PMA
2 3 4 7 8 11 12 13 16

Batch

Search for location in PMA
Find Beginning of Leaf in Batch 

Merge into leaf

1 5 - - 10 14 - - 15 17 - - 2 3 4 11 12 13 16

Recurse for each half

Merge the elements in the batch into correct positions in the PMA

Save work by minimizing the number of searches and the sizes of the searches 20



Batch Merge - overflowing leaves

Sometimes we need to merge more elements into a leaf than can fit

With parallel modifications going on we cannot merge into neighboring leaves

Temporarily store the elements out of place with a pointer and a count

- 5 → -

1 2 3 4 5
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1 5 - - 2 3 4

Elements to merge 
won’t always fit



Finding overfull PMA nodes
 

●● ●●●●●●●● ●● ●●● ●●●●●●● ●●●●● ●●●● ●●●
Max elements 

per node 

6

10

20

40

Walk up the PMA tree from 
each modified leaf counting 
nodes until a satisfied node 
is found
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Serially this is trivially 
optimally done by simply 
caching counts

In parallel nodes can be 
counted multiple times 
before they are cached



Parallel Batch Inserts - Parallel Counting
 

●● ●●●●●●●● ●● ●●● ●●●●●●● ●●●●● ●●●● ●●●

Max elements 
per node 

6

10

20

40

8 7 38 7

10

2

12

5

12
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4

Use cached 
count

A work-efficient counting algorithm for PMA batch updates that counts every 
necessary cell exactly once.

Process levels of the 
PMA tree serially

Process nodes of a 
level in parallel

Count elements of a 
node in parallel
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Batch Insert Performance

2.5x serial speedup

47x total speedup

Only 20x parallel 
speedup on 128 

threads
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PMA Space Usage

We find we can reduce the growing factor to 1.2 to improve the space usage 
and scan time, and match the insert performance at 2x growing factor
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Compression

Compression helps minimize memory footprint to maximize use of available memory 
bandwidth

Store leaf heads uncompressed, delta compress the rest of the leaf

00000100 00010000 - - 00010010 00010100 00010111 -

00000100 00010000 00010010 - 00010100 00010101 00010111 -

PMA
Insert (00010101)

CPMA (k=4)
Insert (00010101)

00000100 1 001 0 100 0 010 - 00010100 0 011 - - -

00000100 1 001 0 100 0 010 - 00010100 0 001 0 010 - -

Continue Bit
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Compression improves Scalability
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Compression improves throughput

2x speedup

1.3x speedup
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Compared to tree based batch parallel sets
We compare to compressed cache optimized trees (C-PaC) and binary trees (P-Trees) both 
with parallel batch updates
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While PMA is a bigger than a 
uncompressed cache optimized 
tree

The CPMA is the same size as 
a compressed cache optimized 
tree



Packed Memory Arrays

Packed Memory Arrays are an excellent choice for ordered sets

By optimizing for the memory system we have an improved structure which can 
outperform existing structures across a wide range of benchmarks

https://github.com/wheatman/Packed-Memory-Array 
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https://github.com/wheatman/Packed-Memory-Array


Backup
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Compression Ratio

# Elts U-PaC PMA PMA
U-PaC

C-PaC CPMA CPMA
C-PaC

CPMA
PMA

1E6 8.07 11.82 1.46 4.23 4.77 1.13 .40

1E7 8.12 10.51 1.30 4.01 4.25 1.06 .40

1E8 8.09 11.36 1.40 3.34 3.16 .95 .28

1E9 8.07 9.89 1.23 2.99 2.81 .94 .28

34



Limitations of PMAs

PMAs are designed for throughput, they are (as described) an amortized data 
structures which can have linear work worst case behaviors

PMAs can have bad input distributions which make updates slower
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SPMA partially ordered elements

Insert 100 million elements

p chance of being a new minimum

1-p chance of being random

At p = 1 the SPMA are 2-4x slower than 
random, while the B+-Tree is 6x faster

Worst case B-Tree is 1.5x faster than 
worst case SPMA
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Parallel PMA Updates

Batch Parallel updates

Supply the data structure with a batch of elements, and it adds all of them

The data structure internally parallelize the operations

See CPMA: An efficient batch-parallel compressed set without pointers 

Thread-safe concurrent updates

Different threads can add elements to the structure concurrently

See A Parallel Packed Memory Array to Store Dynamic Graphs
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https://dl.acm.org/doi/abs/10.1145/3627535.3638492
https://epubs.siam.org/doi/abs/10.1137/1.9781611976472.3


PMA Space Usage

We find we can reduce the growing factor to 1.2 to improve the space usage 
and scan time, and match the insert performance at 2x growing factor 38


