
(Module 1)

Vertically Integrated Projects (VIP) Program

 Overview
◦ What is an Embedded

System?

◦ Application examples

◦ Key characteristics

◦ Recent trends

◦ Embedded System Designer

◦ Role of the Design Team

 Software
◦ Compilers and Languages

◦ System Development

 Debugging

 Resource scarcity

 Approach principles

 Software (cont.)
◦ System Architecture

 System sketches (diagrams)

 From diagrams to architecture

 The Model-View-Controller
(MVC) pattern

 Hardware
◦ Examples

◦ Datasheets

◦ Schematics

◦ Debugging tools

 H/S Integration
◦ System development

◦ Dealing with errors

2

 Elecia White, Making Embedded Systems,

O’Reilly, 2011.
◦ Not language-specific

◦ Points to many other good references.

◦ Includes interview-type questions

 E. A. Lee and S. A. Seshia, Introduction to

Embedded Systems - A Cyber-Physical Systems

Approach, LeeSeshia.org, 2011.
◦ Available online

3

 In your own words…

◦ A system where different things are brought together to perform a
particular application

◦ An electronic device with computing capability, but whose main
purpose isn't computing (i.e. cellphone, appliance,..., not a laptop)

◦ Combination of h/w and s/w designed for a specific set of
purposes (as opposed to a PC which can be programmed to
close to anything)

◦ A system that contains a micro computer controller

◦ A computerized system that operates under resource constraints

◦ A miniature computation system developed for low power, high
performance devices

5

 Is a computerized system that is purpose-built for

its application.

Elecia White
Making Embedded Systems

6

7

 Modern Cars

◦ Use ~100 processors

◦ Complex software for

 Engine & emissions control

 Stability & traction control

 Diagnostics

 Gearless automatic transmission

8 http://www.howstuffworks.com/car-computer.htm

Qorivva MPC560xP

MCU family (32-bit)

For Chassis and

Safety Applications

9

CoolBio ultra-low power biomedical

signal processor

• 0.01x mW/MOPS

• Less than 1 mA @ 1 V

• Less than 10 mm2 of Si

Kochkin’s 2008 survey

Americans with hearing impairment:

• 35 million = 11.3% of population

• > 40 million by 2025

10

Samsung S3C2410

• 16/32-bit ARM920T processor.

• Clocked up to 203MHz

• Instruction and Data: 16KB each

Prof. Maysam Ghovanloo, Georgia Tech

Tongue Drive System

11

12

 Not a personal computer

 Real-time processing
◦ Reactive to changes in the

environment

 Never terminates the

program

 Not general purpose –
specific
◦ Application known a priori

 A computing device of a

larger system

 Integrated with
sensors and actuators
(cyberphysical)

 Interacts with the
external world

 Its operation is time-
constrained

 Increasingly high
performance and
networked

13

 Multimedia demands increasing computation
◦ E.g. HDTV, cellphones, mp3 players, tablets

 Low power demand enables higher efficiency
◦ Reducing current consumption in devices (e.g. FinFET’s)
◦ Idle time becomes more important than active

 Energy harvesting alternatives are critical
◦ Could the ear generate energy to power a cochlear implant?

 Trend enables novel applications
◦ Computing
◦ Communications

◦ Sensors
◦ Controls

 Devices are increasingly networked
◦ Cars with web servers
◦ Buildings with networked environmental control

 Increasing need for flexibility and modularity
◦ Reduce time-to-market under ever changing standards

14

MIT-Harvard

Image: Patrick P. Mercier

15

 Interdisciplinary learning
◦ Hardware and software skill sets must be integrated

 Diverse background in team members and teamwork
make the job in embedded systems easier

 Team skills need to include the ability to:
◦ Read a datasheet

◦ Understand the components of a new processor

◦ Get to know a new processor

◦ Go through schematics

◦ Put together a debugging toolbox

◦ Test hardware (and software)

16

 Embedded systems use cross compilers
◦ Creates code that can run on the specified target

platform

◦ Larger processors make use of Unix-compatible cross

compilers

 Embedded software compiler’s languages
◦ C, or C/C++ (only a subset of C++)

◦ Java may become popular, but only works on systems

with larger memory storage capacity

18

 Memory (RAM)

 Code space (ROM or Flash)
◦ May be traded for processor cycles, more space but faster

 Processor cycles or speed
◦ Tradable for battery life, i.e. lower power consumption

 Power consumption (battery life)
◦ Usually a design driver in stand-alone applications

 Processor peripherals
◦ May be created using I/O lines and processor cycles

19

 Some “bugs” during the debugging process are caused by
resource scarcity

 Other are only expressed during board-bring up

◦ Introduces uncertainty on sources of the bugs
 Is the bug a problem on hardware or software?

◦ Bugs may damage hardware – application specific
 Requires paying attention to details and learning fast

 Same challenges found in one system may not apply to a different
system

 Consider the function of the final product
◦ Bugs may result in catastrophes

 Consider aviation, medicine, or other critical fields of application

20

 Some challenges may be overcome by making use of the
following principles

◦ Flexibility

 Allows to introduce changes in system design adapting to constraints
found in different hardware configurations

 Employs modularity and encapsulation to define functional software
elements

◦ Modularity

 Separates the functionality of a system into subsystems

 Hides the data used by subsystems and defines classes of objects
 Such is the case in object-oriented programming

 Enables code changes with minimal or no impact to other modules

◦ Encapsulation

 Establishes the interfaces (inputs, outputs, properties) of modules

 Isolates software elements
 In object-oriented design it defines classes

21

22

 Isolates the GUI center of the application from the
user interface for independent testing
◦ The Model

 Contains the domain-specific data and logic

◦ The View

 Is the interface to the user (input and output)

◦ The Controller

 Bridges the Model and the View

 For example:
◦ The View-Controller modules may allow to exchange

displays and inputs (e.g. keyboard and screen in a PC
for a touchscreen in a tablet)

23 Elecia White, Making Embedded Systems, O’Reilly, 2011.

24

 Audio illustration

Elecia White, Making Embedded Systems, O’Reilly, 2011.

26

DE2i-150 FPGA Development Kit
Snapdragon™ S3-based Dragonboard™

Arduino R3 SMD Raspberry Pi Model B
Beagleboard

 Microcontroller: ATmega328
◦ Maximum operating frequency = 20 MHz

 Memory
◦ Flash Memory: 32 KB (ATmega328)

 0.5 KB used by bootloader

◦ SRAM: 2 KB (ATmega328)

◦ EEPROM: 1 KB (ATmega328)

 Operating Voltage: 5V

 Input Voltage: 7-12V

 Input Voltage (limits): 6-20V

 Digital I/O Pins: 14 (6 provide PWM output)

 Analog Input Pins: 6

 DC Current per I/O Pin: 40 mA

 DC Current for 3.3V Pin: 50 mA

 Clock Speed 16 MHz

27

 Processor: Intel Atom N2600

 FPGA: Altera Cyclone IV GX

 Intel® Chipset NM10

 Audio Input & Output

 HDMI 1.3a

 VGA

 PCIe Mini Card (Half-Size)

 mSATA Card (Full-Size)

 USB 2.0 Host x4

 10/100/1000 M Ethernet

 SATA Gen2

 DDR3 SO-DIMM Socket

 VGA Display, TV Decoder (Composite Input)

 Gigabit Ethernet

 SD Card Socket

 IR Receiver, RS232

 Accelerometer

 HSMC & GPIO Expansion Connector

 EEPROM, Flash (64 MB), SSRAM (2 MB), SDRAM (64 MB x2), and

EPCS64 (for FPGA Configure)

 Two PCIe x1 (Connected to Intel Atom)

 On board Oscillator and SMAx2 for External Clock Input & Output

 LED, 2x16 LCD, Button, Switch & 7-Segment

 On-board USB Blaster 28

 APQ8060 dual core processor

 Adreno 220 Graphics

 1500 mAH battery

 3.61” WVGA Display
◦ Cap Sense Multi-touch screen

 5MP main camera

 2MP camera for video telphony

 BT/WiFi expansion card

 Sensors expansion card
◦ Pressure and temperature

◦ 3-axix accelerometer

◦ 3-axis gyro

◦ Proximity and ambient light

◦ 3-axis compass

29

30

 Sections to explore
◦ First: driver-useful information

 Operation information

 Initialization

 Communication

 Timing diagrams

 Describe digital states

 Show transition relationships

 Start on left hand side

 Time progresses from left to right

◦ Next: Other sections

 Find example applications

(may give hints on

implementations)

31

32

SN74HC595

Shift Register (8-bit)

 Represent devices and

their connections

 Include
◦ Chips

 Microcontrollers

 Processors

 Peripherals

◦ Circuit elements

 Passive: resistors, capacitors, etc.

 Active: inverters, op-amps, etc.

◦ Logical components

 And, or, not, nand, nor

◦ Connections

 Power, ground, wiring, pull-up, etc.

33

Common Schematic Components

34

 Arduino Uno ATmega8

 Equip your station with
◦ Handtools

 Needle-nose pliers

 Tweezers

 Include mini-pliers

 Screwdrivers

 Box cutter

◦ Measurement devices
 Oscilloscope

 Digital multimeter

◦ Vision support/protection
 Magnifying glass

 Safety glasses

 Flashlight

◦ Miscellanous
 Electrical tape

 Sharpies

 Cable ties
 Velcro

 Zip ties

35

 Conception

 Prototyping

 Board bring-up

 Debugging

 Testing

 Release

37

 Three different diagrams are recommended

(White 2011)

◦ Architecture block diagram

 Helps define software modules

◦ Hierarchy of control organization chart

 Establishes relationships of modules

(i.e. which module calls which other one)

◦ Software layering view

 Allows to size modules by their complexity

 Helps identify modules to be combined

38

Main Processor

PWM I/O Backlight

Parallel LCD Driver

S

c

r

e

e

n

B

uf

fe

r

Rendering

I

m

a

g

e

s

T

e

x

t

Generated Graphs

F

l

a

s

h

D

r

i

v

e

r

S

P

I

L

C

D

B

a

c

kl

ig

ht

Flash

Version

Image

data

Font

data

Main

Display

Renderi
ng

Text
and
fonts

Images

Flash

SPI

Generat
ed

graphic
s

LCD

Parallel
interfac

e

Sensor Logging

Print
serial

number

Rendering

Logging

Images LCD Backlight

Generated graphics

Fonts
S

N

Flash Parallel I/O PW M Out

S

P

I

 Architecture block diagram

◦ Hardware block diagram

39

Elecia White, Making Embedded

Systems, O’Reilly, 2011.

◦ Software architecture

Processor Flash
SPI

Processor Flash

SPI

 A more detailed software architecture block diagram
◦ Continue adding modules as required by design elements

40

Main Processor

PWM I/O Backlight

Parallel LCD Driver

Screen

Buffer

Rendering

Images

Text

Generated Graphs

Flash

Driver SPI

LCD

Backlight

Flash

Version

Image data

Font data

 Hierarchy of control diagram

◦ “Main” defines the top level

◦ Lower levels are called by

those higher in the

hierarchy

◦ Helps document

shared resources

 Robustness may be

compromised when

sharing resources

41

Main

Display

Rendering

Text and
fonts

Images

Flash

SPI

Generated
graphics

LCD

Parallel
interface

Sensor Logging

Print serial
number

 Software layering view
◦ Represents objects by their estimated size

◦ Draw from the bottom, from processor

◦ Facilitates grouping resources

 Horizontally or vertically

42

Rendering
Logging

Images LCD Backlight

Generated

graphics

Fonts SN

Flash Parallel I/O PWM Out

SPI

 What is a prototype?
◦ It is a physical model of the product

that is tested to validate conceptual
design decisions

 Objective
◦ To demonstrate that the concept

performs the functions that satisfy the
design specifications (customer
needs)

 It may include a succession
of proof-of-concept models

 It is not intended to look like
the final product
◦ Layout, size, connections, structure,

and packaging

43

UCSD Aquanode Prototype

 What is board bring-up?
◦ Is the process of electrically and

functionally validating hardware

components in a printed circuit board

assembly (PCBA)

 Objective
◦ To power up the hardware and verify

every testable component in the PCBA

 How is it done?
◦ Taking small steps first; e.g. testing an

I/O device with an LED or oscilloscope

◦ With in-detail understanding of how the

processor and peripherals work

 Reading their datasheets

44

 Works different from computer programming debugging
◦ For an embedded system it makes use of dedicated ports and demands

system resources.

 For a cross-compiler, need a cross-debugger

 The cross-debugger
◦ Makes use of a dedicated debug interface

 Emulator

 In-circuit emulator (ICE)

 JTAG standard (“jay-tag”)

◦ Communicates with target processor
◦ Makes use of processing capacity

 Limited debugging operations on processors
◦ Reduces production cost
◦ Maximum number of hardware breakpoints = 2

 Debugging alternative: Use printf (most commonly used)

45

 Types of test
◦ Power-on self test (POST)

 Verifies that all components run properly

◦ Unit tests
 May require to test all possible software

paths (time consuming!)

 Aims to detect all bugs before deployment

 Alternative: test cases likely to occur (!)

◦ Bring-up tests
 Developed earlier for components that may

not have worked as expected

 Sometimes built upon for more
comprehensive tests, or added to unit tests

 Test software should make
hardware testing easier
◦ Think about a production line

 Proper s/w documentation
◦ Promotes better quality control
◦ Facilitates s/w certification

46

 Ends the design stage

 Should involve s/w certification
◦ Expensive (!)

◦ Time consuming (again, expensive)

 Delivers design data to
manufacturing
◦ Engineering drawings, design

notebooks

◦ Bill of materials

◦ Software (source code, compiled files)

◦ Documentation (datasheets, specs,
reports)

47

 Applications to keep in mind

◦ Medical

 ICU at home for life support monitoring

◦ Assistive technology for

 senior citizens

 individuals with disabilities

◦ Automation in transportation systems

 Motor vehicles

 Aircraft

◦ Home-automation

48

Why software certification is important

 Possible sources of errors
◦ Written code

◦ Environmental conditions

 Options of error handling

◦ “Graceful degradation”: The system does not collapse
while the software does the best it can

 Example: A long-term sensor system for data logging

◦ Immediate stop: The system triggers an alarm and enters
safe mode

 Example: A non-life-critical medical system with redundancy

 49

 Some options
◦ assert(): if the argument is false (equals to zero)

abort is called and a message is printed out to the

standard error device.

◦ printf() prints a message to a system console or log.

◦ An LED that blinks on error conditions.

◦ An error handling library

 Make each function return an error code

 Include error functions:

 ErrorSet()

 ErrorGet()

 ErrorPrint()

 ErrorClear()

50

 After this presentation you should know about:
◦ Basics

 What is an embedded system

 Key characteristics

 Recent trends

 Makeup of a design team

◦ Challenges for software development

 System development and architecture

◦ Skills and tools needed to approach hardware

 Reading a datasheet and schematics

 Debugging tools

◦ Hardware/software integration

 The cycle of system development

51

 I/O Software Interface

 Outputs

 Inputs

 Timers

 Runtime uncertainty

52

