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The objective of this research effort is to integrate therapy instruction with child-robot play
interaction in order to better assess upper-arm rehabilitation. Using computer vision tech-
niques such as Motion History Imaging (MHI), edge detection, and Random Sample Consensus
(RANSAC), movements can be quantified through robot observation. In addition, incorpo-
rating prior knowledge regarding exercise data, physical therapeutic metrics, and novel ap-
proaches, a mapping to therapist instructions can be created allowing robotic feedback and
intelligent interaction. The results are compared with ground truth data retrieved via the
Trimble 5606 Robotic Total Station and visual experts for the purpose of assessing the effi-
ciency of this approach. We performed a series of upper-arm exercises with two male subjects,
which were captured via a simple webcam. The specific exercises involved adduction and ab-
duction and lateral and medial movements. The analysis shows that our algorithmic results
compare closely to the results obtain from the ground truth data, with an average algorithmic
error is less than 9% for the range of motion and less than 8% for the peak angular velocity
of each subject.

Keywords: Rehabilitation; Humanoid; Motion History Imaging; Dynamic Time Warping;
Random Sample Consensus

1. Introduction

In the United States, the Individuals with Disabilities Education Act (IDEA) states
that children with a physical disability are entitled to a free public education that
emphasizes special education and related services designed to meet their unique
needs and prepare them for further education, employment, and independent liv-
ing. Unfortunately, access to necessary assistive technology remains unequal and
persons with severe or multiple physical disabilities are largely overlooked. How-
ever, recent successes in commercial robots appear to foreshadow an explosion
of promising robotic applications for individuals with disabilities. Mechatronic and
robotic systems for neurorehabilitation can be generally used to record information
about the motor performance (position, trajectory, interaction force/impedance)
during active movements (Kwakkel et al 2008; Takahashi et al 2007; Colombo et
al 2005). Sensory-motor rehabilitation techniques based on the use of robotic and
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mechatronic devices have been applied with stroke patients (Krebs et al 1998;
Reinkensmeyer et al 1999; Burgar et al 2000; Volpe et al 2000; Lum et al 2002;
Hesse et al 2003; Loureiro et al 2003; Patton and Mussa-Ivaldi 2004; Mehrholz et al
2009). Furthermore, being able to objectively assess the performance of a patient
through repeatable and quantifiable metrics has shown to be an effective means for
rehabilitation therapy (Volpe et al 2000; Hesse et al 2003; Hurley 2009; Casadio
et al 2009; Federico Posteraro et al 2009; Brewer et al 2007). The major barrier is
that, to date, most assistive robotic devices are not designed for children.

Studies in child cognitive behavior indicate that with repetitive and monotonous
conditions over time, performance decrement occurs due to a reduction in arousal
(Cooley and Morris 1990). This, in-turn, leads to a decrease in sustained attention
for the current activity and overall motivation for continued repetitions of the
exercises. Given that physical rehabilitation sessions consists of many repetitive
and monotonous actions and sustained attention improves with age (Cooley and
Morris 1990), it is important that researchers incorporate various methods for
motivating children during this process.

There are several reasons that may be fueling the lack of necessary technological
devices geared towards aiding children, both with and without disabilities. In gen-
eral, researchers must first and foremost obtain the approval of their Institutional
Review Board (IRB) before conducting any studies involving humans. For those
who wish to conduct studies involving children, researchers must additionally ob-
tain parental consent. This alone may cause a hindrance for collecting data from
children that could ultimately lead to groundbreaking technology for this particular
group. When considering children with disabilities, parents are typically even more
protective and more reluctant to allow their child to participate in such studies.
Furthermore, because disabilities vary from one individual to the next, it becomes
quite challenging to design an assistive aid that is capable of providing assistance
that is unique to each person. For instance, even within the realm of cerebral palsy
there are various types and levels. One may have an issue of spasticity, where the
muscles are very stiff and causes abnormal or jerky movement. However, a sepa-
rate individual may have full motor functionality, but has an issue with speech.
These variations cause a unique challenge for deploying robotics for this target
demographic.

To overcome this barrier, state-of-the-art techniques must be created to facilitate
the interaction necessary to be useful for therapeutic rehabilitation with respect
to children. Utilizing the logical fact that animate toys naturally engage children,
this research focuses on the design of a robotic therapeutic playmate that will
aid children in physical rehabilitation by fusing play and rehabilitation techniques
that are both entertaining for the child and effective for upper-arm rehabilitation.
The robotic playmate, consistent with prior theory from physical therapy metrics,
will incorporate visual queues that will determine the amount of movement that a
child makes and his or her consistency with respect to the movement of the robot.
Of particular importance within this proposed work are approaches that allow
therapists to assess the information obtained by the robot during play scenarios,
thus requiring that the data is conveniently decipherable.

In this article, several successful trials of employing this novel approach to phys-
ical therapy scenarios will be illustrated. Section 2 gives a brief overview of the
current state of the field of therapeutic robots. Section 3 provides an overview of
the current methods that are used by physical therapists to administer upper-arm
rehabilitation sessions. Section 4 gives a detailed account of the methodology used
in this research to achieve the aforementioned goals of attaining appropriate phys-
ical therapy metrics via image processing. Sections 5 and 6 are a presentation of
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the results and the advantages and disadvantages of this approach, respectively.
Finally, Section 7 concludes the article with a discussion of the future direction of
this research.

2. Therapeutic Robotics

The use of robotics to aid in therapy is an on-going area of research. Scientists
continue to design new methods for administering aid to those in need of cognitive
and physical development. Even though no robot can replicate the knowledge and
experience of a therapist in assessing the needs of the patient and the outcomes of
the therapeutic program, robotic technology can be used to carry out the repetitive
practice that is needed to facilitate functional gains (Lum et al 2002). Whether
using these new methods to assist with developing communication skills or aiding
in patient motor development, researchers have shown that the use of robots can
greatly improve patient therapy sessions.

2.1. Keepon

One robotic platform that has been developed for therapy and play is Keepon.
Introduced by researchers and physicians in Japan, Keepon was designed to get
autistic and non-autistic children (ages 2-4) involved in playful interaction that was
generally initiated and directed by the child (i.e. without any experimental setting
or instruction) (Kozima et al 2005). A point of emphasis for the Keepon design
was to keep it as simple as possible in order to abstain from overwhelming and/or
frightening the children, a notion that all researchers working with therapeutic
robots should keep in mind. Therefore, the simple structure and function only
contained two color CCD cameras as eyes, a microphone as a nose, a small gimbal
and four wires, by which the body is manipulated like a marionette, four motors
and two circuit boards (an SH2-based PID controller and a motor driver). Since
the body is made of silicone rubber and its inside is relatively hollow, Keepons head
and belly deform whenever it changes posture and when people touch it (Kozima
et al 2005).

The resulting information, obtained from a year and a half of data collection,
indicated that Keeponssimple appearance and predictable responses gave the autis-
tic children a playful and relaxed mood, in which they spontaneously engaged in
dyadic play with Keepon. This in turn expanded into interpersonal communication
where Keepon worked as the pivot of triadic play with adults or other children
(Kozima et al 2005).

2.2. CosmoBot

Another robotic system that has been designed for therapy, education, and play is
the CosmoBot™™ . Children interact with the CosmoBot”™ | controlling the robots
movements and audio output, using a variety of gestural sensors and speech recog-
nition, while actively targeting their therapy goals (Brisben et al 2005). The system
consists of the physical robot, an interface board, interface software, and plug-in
gestural interfaces (joystick, head sensor, and arm sensor).

Researchers recruited six children who were already receiving outpatient physical
and occupational therapy services with a physical therapist. More specifically, the
subjects ranged in age from 4 — 10 years old, and each subject had a diagnosis of
cerebral palsy and received physical and/or occupational therapy for treatment of
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upper extremity motor deficits. The physical therapist provided feedback regard-
ing the system, noting that it was easy to use and that it provided a motivating
factor for client participation. Furthermore, researchers reported improvements in
the physical abilities of patients, reporting patient novelties such as multi-tasking,
improved attention span, improved upper extremity strength and coordination,
and an improvement in daily activities of living (Brisben et al 2005).

2.3. Moving Forward

These humanoids provide a brief overview of state-of-the-art robotic platforms used
in therapy. While these robotic systems are among the first to make significant
progress toward aiding individuals with severe disabilities, there is still much that
needs to be solved. First, neither of these designs give a physical assessment of the
individuals’ motor skills. Even though children with disabilities may never have full
usage of certain body parts, significant improvements can be made in hopes that
these individuals will be able to lead healthy, self-contained lifestyles. Also, of the
systems that do incorporate a physical assessment of the individual, only few, if
any, are fully autonomous with a completely on-board system; each has to connect
to a computer which incorporates its intelligence system or is teleoperated.

As an example, MIME or Mirror-Image Motion Enabler (Burgar et al 2000),
was designed to aid in the physical rehabilitation of stroke victims. This platform
functions by strapping the subject into a wheel-chair that has mobile arm sup-
ports, which limit horizontal movement, and a robotic arm that applies forces and
torques to the arm through those supports. The desire is to monitor patient re-
covery through parameters obtained via force-feedback. Another robotic platform
with the capability of providing an assessment of a patient’s physical attributes
was introduced by Gockley and Matari¢ in 2006. The researchers in this project
attached a laser range finder to a Pioneer-2DX robotic platform that was used to
track and locate a patient wearing a reflector on his or her leg. The researchers
actually used the system as a way of encouraging the patient to continue the reha-
bilitation session through positive reinforcement, which was provided via a series
of beeps and movements based on the patient’s movements. As a control variable,
they varied the robot’s level of engagement (or amount of movement) and they
reported the patients’ level of engagement and comfort with the robot (Gockley
and Matari¢ 2006).

With the introduction of these robotic systems, we have research showing ap-
proved attention span and, separately, contact assistive robotics. By bridging the
gap between these two research areas, we can design a system that allows a patient
to move freely while keeping them engaged and motivated during a continuous
rehabilitation session. Furthermore, since the progression of robotics has been to
achieve full autonomy, it is ideal to produce systems with the capabilities of making
intelligent decisions and performing actions without the aid of a separate system,
be it human or computer. This work is an attempt to alleviate these issues.

3. Current Physical Therapy Metrics

Until recently, many of the current physical therapy metrics were not designed with
the intent to administer such practices to children with disabilities. For instance,
the Fugl-Meyer Test (Fugl-Meyer et al 1975), an assessment that consists of 155
items and is used to determine the impairment in the upper and lower extremities,
was designed specifically for stroke victims. Utilizing a scoring scale of 226, phys-
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ical therapists administer a series of tests, which include reflex activity, balance,
sensation, position sense, and range of motion (ROM) for evaluating a patient’s
degree of impairment (Duncan et al 1983). However, this scoring scale is based
upon the movement expectations of a healthy adult subject.

The lack of a legitimate metric of child motor development lead therapists to
design scales specifically for assessing the aforementioned group. The Gross Motor
Function Measure (GMFM) (Russell et al 1989) and the Peabody Developmen-
tal Motor Scales (PDMS) (Folio and Fewell 1983) are the two well-known motor
instruments for children, specifically those diagnosed with cerebral palsy (CP).
However, the GMFM measures the gross motor (GM) domain only (Russell et al
1989). For measurement of the fine motor (FM) domain, the GMFM is inadequate
as an evaluative tool (Wang et al 2006). The opposite is true of the original PDMS.

During the late 1990’s, with the culmination in 2000, the PDMS was revised
to the Peabody Developmental Motor Scales—Second Edition (PDMS-2), with new
norms, revised testing materials, more precise scoring criteria, and more informa-
tion on norm samples (Folio and Fewell 2000). Scores include 1) a Gross Motor
Quotient which is a composite of the Reflexes, Stationary, Locomotion, and Ob-
ject Manipulation subtests, 2) a Fine Motor Quotient, a composite of the Grasping
and Visual-Motor Integration subtests, and 3) a Total Quotient, a combination of
the gross and motor subtests (Folio and Fewell 2000). The new normative data
on the PDMS-2 was collected on 2,003 children both with and without disabili-
ties. There are also more reliability and validity data for the PDMS-2 than for the
PDMS (Folio and Fewell 2000). Therefore, the PDMS-2 is potentially appropri-
ate for investigating the progress of the gross and fine motor domains for children
with and without disabilities because it assesses both GM and FM composites and
incorporates both quantitative and qualitative rating criteria (Wang et al 2006).

Since the research presented in this work focuses on non-contact, upper-arm
rehabilitation, specifically for the shoulder joint, we present the successful analysis
of a typical metric used by physical therapist, ROM. As an extension of ROM, we
also quantify the patients’ peak angular velocity (PAV) for the purpose of providing
a more accurate quantitative analysis. These types of measurements can coincide
with a child’s ability to catch and throw objects as well as his or her reaction
to environmental events; each of those items are within the object manipulation
and reflexes subtests of the PDMS-2. Simultaneously, we desire to provide a new
method for obtaining this data, namely a way to keep the child subjects motivated
during the process.

4. Approach

In order to achieve the goal of obtaining physical therapy metrics by using computer
vision as the only means of collecting data, several image processing techniques are
employed. First, the video sequence is partitioned into separate gray-scale images
containing information regarding human movement via a process termed Motion
History Imaging. Then, the incoming data is aligned with the robot’s notion of
its own motion (i.e. a set of images representing the robot’s movements). Next,
a contour extraction process is applied to each of the remaining images, which
creates an ideal representation of the two movements. Finally, a Random Sample
Consensus is applied to the ideal contours, which enables the determination of
straight line segments ultimately allowing the calculation of the ROM; adding the
known factor of the number of frames per second (fps), the PAV is also calculated.
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4.1. Motion History Imaging

4.1.1.  Background

The initial step in determining the consistency between robotic movements and
child movements is to segment a video sequence into individual images that con-
tain pertinent information as they relate to the overall representation of recent
movement (Brooks and Howard 2009). One common technique for attaining the
three-dimensional information from a particular movement is to recover the pose of
the person at each time instant using a three-dimensional model (Bobick and Davis
2001). This generally requires a strong segmentation of foreground /background and
also of individual body parts to aid the model alignment process. Furthermore,
background uniformity is typically a necessity when processing images for motion
estimation (Goncalves et al 1995; Rehg and Kanade 1995). However, in this work,
it is desirable to enable child-robot interaction and data collection immediately
rather than require the child to wait during an initiation process.

Since the purpose of this work is to analyze the movement of specific body parts,
similar to Campbell and Bobick (Campbell and Bobick 1995), the algorithmic
approach is to use temporal templates. While some algorithms utilize sequences
of static configurations, which require recognition and segmentation of the person
(Polana and Nelson 1994), here, a Motion History Image (MHI) to represent how
motion in the image is moving is specifically formed. This essentially allows real-
time processing of the input data.

4.1.2.  Methodology

In a MHI, pixel intensity, H,, is a function of the temporal history of motion at
that point in physical space (Bobick and Davis 2001). Similar to Bobick and Davis,
a replacement and decay operator is used, as shown in Equation (1), to obtain the
MHIs:

E: if D(z,y,t)=1
HT(I’ y’ t) - {max(O’ H’T(x7 y’ t — 1) - 1) Otherwise (1)

where D is a binary image sequence indicating regions of motion, z and y are the
horizontal and vertical directions in the image, respectively, ¢ is the current time
step, and 7 is the current intensity value (Bobick and Davis 2001). The result, as
illustrated in Figure 1c, is a scalar-valued image where more recently moving pixels
are brighter in intensity.

Once the MHI has been determined for a specific frame, a feature vector is
created for that frame by dividing the MHI into an 8x8 grid, calculating the mean,
1, and standard deviation, o, from each grid, and then constructing an 64 length
feature vector. Various size grids could be used, but it is ideal to adhere to the law of
diminishing returns by utilizing a feature vector that will allow the most features for
image recognition without compromising a significant amount of processing time
(i.e. minimize the classification error using the appropriate feature vector while
maximizing the classification rate of the classifier). Figure 2 and Table 1 show the
results of testing different size grids, which indicate that a 64 length feature vector
is ideal.

Utilizing the feature vectors of the reference image and the input image, a nor-
malized Manhattan distance is calculated, for ease of use, between the two as shown
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(a) Subject’s starting position. (b) Subject’s ending position.

(c) MHI of sequence.

Figure 1. Motion History Image of the left arm movement.

Recognition Rate vs. Feature Vector Length
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Figure 2. Graphical representation of feature vector selection.

Table 1. Resulting Processing Times and Recognition Rates for Various Fea-
ture Vector Lengths

Feature Vector Length  Processing Time (s)  Recognition Rate(%)

9 76.59 90.45
16 80.96 92.11
36 83.35 92.40
64 86.06 92.59
81 89.58 92.59
144 93.17 92.59

in Equation (2):
A7) =i - i 2)
i=1

where z and y are the the feature vectors of the reference and input frames and
d is the Manhattan distance. However, the normalized Manhattan distance only
gives information on a per frame basis. Once the child’s movements have been
effectively represented using MHI, the next step invokes aligning that movement
with the robot’s perception of its own movement.
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Input frames Frame 1 | | Frame 2 | | Frame 3 | | Frame 4

Frame | Frame 2 | | Frame 3 | | Frame 4

Reference frames

Insertion Deletion Substitution

Figure 3. Pictorial representation of the basic operations of Dynamic Time Warping.

4.2. Dynamic Time Warping

Dynamic Time Warping (DTW) is a process typically used in communication pro-
tocols for speech recognition (Parsons 1987). The overall idea is to align the input
speech data with data from a reference speech signal by repeating certain portions
of a set of data that do not match the current position of the opposing set. For ex-
ample, when someone wishes to place a phone call via voice dialing, he or she may
simply say “Call, John Doe”. The next time that the same individual wishes to call
John Doe via voice dialing, his or her voice will undoubtedly have variations from
the first time that voice dialing was initiated. For instance, the second time, the
individual may say “Call, Jooohn Doe”. Obviously, these two statements are not
identical; however, the desire for the user to call John Doe has not changed. There-
fore, DTW would be used to correctly match the vocal inflections made during the
second speech (i.e. the input signal) with those of the previously stored first speech
(i.e. the reference signal). Here, the three “o0’s” in the input signal would simply
match with the single “0” in the reference signal, and John Doe would receive a
phone call.

In this work, DTW is used to align image representations of robotic movements
with those of the patient’s movements. Since there will be variations in segment
lengths and duration due to varying velocities between the two movements, this
process becomes necessary for deciding whether or not two movements are similar.
Figure 3 is a pictorial representation of the DTW process and is described as
follows: 1.) Insertion: The current reference frame does not match the current
input frame, based on some threshold value v, thus the current reference frame is
repeated until a match is found during the linear search. 2.) Deletion: The current
input frame does not match the current reference frame, thus the current input
frame is repeated until a match is found. 3.) Substitution: The current reference
frame matches the current input frame, and the sequence progresses forward.

The Manhattan distances calculated from the feature vectors obtained during
the MHI process are stored in matrix form and used to determine the best possible
choice between the operations for a specific frame comparison. In other words, the
DTW matrix is populated by performing the following comparison:

Wrd(m,n) + dtw(m — 1,n)
dtw(m,n) = min { Wpd(m,n) + dtw(m,n — 1) (3)
Wsd(m,n) + dtw(m — 1,n — 1)

where Wi, Wp, and Wy are weights for performing an “insertion”, “deletion”, or
“substitution”, d is the Manhattan distance between each frame, and m and n are
the row and column positions in the matrices, respectively. The weights are chosen
such that choosing to perform an “insertion” or “deletion” has more of a penalty
than choosing to perform a “substitution” because the data has been somewhat
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Contour Color Map of DTW

40
Relerence Frames

Figure 4. Contour color map of DTW illustrating the optimal path for mapping an input sequence to a
reference sequence for one articipant with a separate input sequence provided by the same participant.

skewed in choosing the former. It should be noted that the standard form of a
DTW implementation assumes a known starting and ending point in the sequence;
however, here, it is not assumed that the starting and ending points of the exercise
are known. Thus, DTW is employed in order to determine a minimal exit point.

Utilizing this method, the least costly path (i.e. the optimal matching sequence)
is calculated and a mapping between the input sequence to the reference sequence
is obtained thus minimizing the effects of varying velocities. In order to quantify
this method for the purpose of this work, contour color maps were generated from
patient exercise data. Figure 4 illustrates the results of mapping a reference se-
quence provided by the first participant with a separate input sequence provided
by the same participant. As shown in the graph, the input sequence was signif-
icantly longer than the reference sequence; in essence, the participant performed
the exercise at a faster velocity in the input sequence as opposed to the reference
sequence. Given that darker contours represent points of lower cost, an optimal
path would contain the maximum number of dark contours reaching the end of
each sequence; the bold black line shows the chosen path for mapping the two
sequences in this specific scenario.

Contour Color Map of DTW

Input Frames

10 20 30 40 50 60 70 &0 20 100
Refersnce Frames

Figure 5. Contour color map of DTW illustrating the optimal path for mapping a reference sequence
provided by the first articipant with a separate input sequence provided by the same participant performing
two different exercises.

As a comparison, Figure 5 illustrates the results of our DTW algorithm mapping
a reference sequence provided by the first participant with a separate input se-
quence provided by the same participant performing two different exercises. There
are two important points to note from the graph. First, although the DTW algo-
rithm did find an “optimal” path for the two sequences, the path contains numerous
light colored contours which are of high values. Second, only 50 frames of the 160
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(a) Original image obtained from the MHI pro- (b) Image obtained from the Median Filter.
cess.

(c) Image obtained from the Canny Edge Detec- (d) Image obtained from the Convex Hull.
tion algorithm.

Figure 6. Example image processing sequence used to extract an ideal contour from the human’s move-
ments.

possible frames for the input image provided comparable feature vectors. In other
words, this would not be considered a match for movements.

4.3. Contour Extraction

Once the humanoid and child movements have been aligned using DTW, a contour
representing the shape of the respective movements is then extracted. The first
step in this process is to use a median filter that will remove smaller, unwanted
contours in the image typically caused by camera jitter or human inaccuracies
(i.e. movements of body parts other than the desired limb). The median filter is
a sliding-window spatial filter that replaces the center pixel value in the window
with the median of all the pixel values in the window, and it can be of any central
symmetric shape (e.g a round disc, square, rectangle, or cross). Here, a 16x16
square window was used. Figure 6b illustrates the use of a median filter on image
data.

When the smaller contours have been removed, a canny edge detection algorithm
(Canny 1986) is utilized in order to extract the edges of the contour representing
the upper-arm movement, see Figure 6¢. Utilizing the edge detected shape, a proper
representation of the sequence is then created. Again, due to camera inaccuracies
there will undoubtedly be areas in the image where actual movement is not properly
represented, even after the initial filtering and edge detection processes. Figure
6a illustrates an inaccuracy caused by camera lag time; even though the subject
moved his arm in one complete motion, the video sequence shows a gap between
arm positions. Therefore, the convex hull of the edge detected image is determined.

The convex hull can be thought of as the boundary of a minimal convex set of
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Figure 7. Illustration of the original convex hull image.

points containing a given non-empty finite set of points in a plane. The convex
hull that is utilized is that of a simple polygon. By looking at three consecutive
vertices of the polygon, during a recursive progression around the polygon, this
algorithm simplifies to determining whether the resulting angle between the three
vertices is concave or convex. If the resulting angle is concave, then the middle
point is removed and the next (along the polygon) vertex is added to the triple to
be tested. If the angle is convex, then the each of the points in the triple is shifted
by one vertex along the polygon (Cormen et al 1998). Melkman’s Algorithm was
employed to ensure correct outcomes (Melkman 1987). This implementation gives
a somewhat ideal outline as seen in Figure 6d.

4.4. RANSAC

Now that a somewhat ideal outline has been obtained, determining the best method
for finding the range of motion using only the image data is needed. Utilizing the
major axis as a symmetrical dissection of the polygon and employing a Hough
Transform (Duda and Hart 1972) on either the upper or lower region of the contour
could enable a determination of upper or lower line for the purpose of finding the
angle between either line and the major axis. The Hough Transform is a method
used in computer vision to detect simple shapes, such as straight lines, by using
the parameters of a line, y = mz 4+ b and representing the slope and intercept
in parameter space (b, m). However, after much deliberation and testing, it was
decided that since the Hough Transform merely makes estimations of the best
possible line to fit the upper or lower region a more accurate approach would
be beneficial. Therefore, it was decided to use the RANdom SAmple Consensus
(RANSAC) algorithm.

RANSAC determines the best possible line fit by iteratively selecting a random
subset of the original input data and returns points from the original input data
that are inliers. Given a set of data points, U, there is an unknown number of data
points that are consistent with a model with unknown parameters from parameter
space, ©. These data points are inliers, and all others are outliers. The goal is
to find model parameters, 6%, from a parameter space, ©, that maximizes a cost
function, Jg (0,U,A). In the standard formulation, the cost function, Jg , is the
size of the support of the model with parameters, €, i.e. how many data points
from U are consistent with it. Data points with error smaller than a threshold, A,
are considered to be consistent or to support the model; A is an input parameter
to RANSAC. An error function, p (6,z), representing a distance of a data point to
a model is typically given (Chum 2005; Fischler and Bolles 1981).

The RANSAC algorithm carries out the maximization of Jg by repeatedly ex-
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Figure 8. Illustration of the Major (dashed line) and Minor (dotted line) semiaxes located on a contour
obtained from human upper-arm movement. The polygon boundary used to calculate the two semiaxes is
shown with square markers.

ecuting two steps: (i) a hypothesis generation step, where a hypothesis, 0, of
the model parameters is computed from a subset of points, S, selected from the
input data points, U, at random and (ii) the verification step, where the quality
of the hypothesized model parameters is calculated by utilizing a user predefined
probability (confidence = 1 - 1, typically set to 95%) to recover maximum of the
cost function Jg (Chum 2005; Fischler and Bolles 1981).

The algorithm can be described mathematically as follows: Let P be the proba-
bility that a sample of size m is randomly selected from a set U of N data points

~—

1
<m> T L=
P(l)=—% = <m 4
o ) [Iy=2= (
7=0
m
where € is the fraction of inliers e = I/N. The number of inliers, I, is not known
beforehand. Let xj be the largest support of a hypothesized model found up to
the k-th sample inclusively, I} = |xj|. The sampling process is terminated when
the likelihood of finding a better model (with larger support than I}) falls under

a threshold, i.e. when the probability, 7, of missing a set of inliers, x*, of size | x|
<I}; within k samples falls under a predefined threshold, 7,,

n=(1-P(I;))" (5)

The number of samples that has to be drawn to satisfy n<n, is

b (1) = oy ()

This method is a more accurate approach than the Hough Transform because it
only returns points from the original input data (inliers) rather than creating its
own values when predicting the line segment. Also, rather than using the major
axis as one of the two lines used to find the range of motion, it was determined
that a more accurate measure would be to perform RANSAC on the upper and
lower regions (created by the major axis’s dissection of the contour), thus creating
a measure of the highest and lowest positions of the subject’s arm. Figures 7, 8,
and 9 illustrate this process.
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(a) Lower line. (b) Upper line.

Figure 9. Lower line, determined by RANSAC, used to find the ROM.
4.5. Range Of Motion and Angular Velocity

4.5.1.  Range Of Motion

Once the points that create the upper and lower lines are recognized, the slopes
of each are used to calculate the angle between the two lines via simple geometry,
shown in Equation 7:

my = 2
2= ™
© = arctan({72—"-)
gTb2m1
ROM = |08%

where z; and y; are the coordinates of points on each line segment, m; and mo are
the slopes of each line, and © and ROM are the current angle in radians and degrees,
respectively. The maximum angle found over the length of the video sequence gives
the total ROM of the child’s movements.

4.5.2.  Peak Angular Velocity

Given that the frame rate of the camera used to capture the patient’s movements
was 15fps, calculating the angular velocity of the arm was trivial. We chose to use
the initial lower line and subsequent upper lines that were recognized via RANSAC
to determine the angular velocity as it relates to each frame. Meaning, the lower line
found during the first RANSAC calculation over the convex hull in frame one of the
video sequence was used as the initial position of the arm, while the current upper
line changed as the subject moved his arm upward during the exercise. Using the
standard equation for angular velocity, shown in Equation 8, the angular velocity
of the patient can easily be determined with the angle obtained from each pass of
the ROM calculation and known frame rate.

do

The maximum angular velocity would be considered the PAV. Thus, this algorithm
gives two physical therapeutic metrics that can be easily read by physical therapists
for the purpose of analyzing a patient’s current status and overall progress.

5. Results and Analysis

For the initial testing of the methodology of this research, two subjects were uti-
lized, both male. The subjects were asked to perform a series of upper-arm exercises,
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(a) Subject’s starting position. (b) Subject’s ending position.

Figure 10. Lateral and medial movement demonstrated by participant.

which were captured via a simple webcam. The specific exercises involved adduc-
tion and abduction, shown in Figure 1, and lateral and medial movements, shown
in Figure 10. The images were then processed by our algorithm in order to obtain
the ROM and PAV, which then was compared to the data obtained from separate
subjects who performed visual observation techniques (deemed expert users), and
data captured via the Trimble 5606 Robotic Total Station. The specific task of
the expert users was to located the top portion of each patient’s arm in several
sets of images using mouse clicks. Using that information, in congruence with a
constant location for the patient’s beginning position, it was trivial to determine
the ROM and, by extension, the PAV as viewed by the expert users. Expert users
were adults between the ages of 30-35. They were required to have at least five
years of experience in image-processing research. Recruitment of the expert users
was done by word-of-mouth. Since physical therapists typically use visual feedback
and estimation as the sole method for determining a patient’s ROM, the author’s
deemed that this method is at least equivalent to such an analysis.

Occasionally, physical therapists use a measurement device known as a geniome-
ter, which measures the initial and final position of a joint during an exercise to
determine a patient’s ROM. However, the author’s decided to utilize a more accu-
rate approach for retrieving this information. The Trimble 5606 uses a time-of-flight
measurement technique based on the pulse measurement principle; it measures the
time for a very short transmitted pulse to travel to a targeted prism, held by the
subject, and back, thus calculating the position of the subject’s end-effector. The
long-range 5600 series DR200+ total station allows measurements up to 600 m
(1,968 ft) to a 90% reflective Kodak Gray Card and 200m (656 ft) to an 18% re-
flective Kodak Gray Card. The range using a single prism is 5,500 m (18,040 ft)
with an accuracy of (3 mm +2 pixels per meter (ppm)). Coupling that with the
robotic tracker gives a range up to 1,200 m (3,937 ft) with 2” (0.5 milligon (mgon))
(Trimble 2005). (A gon is a unit of angle measurement equal to 1/400 circle, 0.01
right angle, 0.9°, or 54”). As such, the data obtained from the robotic station repre-
sents ground truth. Tables 2 and 3 show the ROM comparison between the expert
users, algorithmic data, and Trimble 5606 for each subject per exercise. Tables 4
and 5 show the PAV comparison between the aforementioned data sets.

As shown in the tables, the ROM values calculated via our algorithm are closely
related to the ground truth data (overall average expert user error < 11% and
overall average algorithmic error < 9%). Figures 11a and 11b show a comparison
between the expert users and algorithm, with respect to the ground truth data,
of the averages across all subjects for the ROM data. For a patient with a limited
range of motion, our algorithm could be used to identify this condition in real-
time, given a known standard ROM. This will allow the system to monitor patient
progress between sessions.

The PAV calculated via our algorithm is related to the trend of those calculated
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Table 2. Measurements of ROM for Adduction/Abduction Exercise.

Subject A Subject B

Repetition 1 2 3 1 2 3

Expert User (°) 90.1 65.5 39.2 86.7 57.0 45.8
Algorithm (°) 86.4 56.5 40.1 88.1 54.9 45.6
Ground Truth (°) 90.3 56.5 31.1 90.0 65.0 42.1
Expert User Difference (°) 0.2 9.0 8.2 3.3 7.9 3.7
Algorithm Difference (°) 3.9 0.0 9.0 1.9 10.1 3.5
Expert User Error (%) 0.18 15.96 26.33 3.65 12.20 8.81
Algorithm Error (%) 4.32 0.00 29.07 2.14 15.53 8.43

Table 3. Measurements of ROM for Lateral/Medial Exercise.

Subject A Subject B
Repetition 1 2 3 1 2 3
Expert User (°) 86.2 57.3 29.8 84.9 56.0 44.7
Algorithm (°) 80.5 55.5 28.0 84.5 62.8 38.4
Ground Truth (°) 90.0 67.2 26.4 88.4 63.2 40.5
Expert User Difference (°) 3.8 9.9 34 3.5 7.3 4.2
Algorithm Difference (°) 9.5 11.7 1.6 3.9 0.4 2.1
Expert User Error (%) 4.22 14.70 13.07 3.95 11.46 10.40
Algorithm Error (%) 10.57 17.43 6.25 4.42 0.67 5.11
Average Differences Across All Subjects for ROM verage Percentages Acros Al Subjects for ROM

o010
Angie Ranges Angle Ranges

(a) Average Differences. (b) Average Percentage Errors.

Figure 11. Comparison between the expert users and algorithm, with respect to the ground truth data,
of the averages across all subjects for the ROM data.

Table 4. Measurements of PAV for Adduction/Abduction Exercise.

Subject A Subject B
Repetition 1 2 3 1 2 3
Expert User (w) 82.1 62.2 57.0 81.9 29.1 26.0
Algorithm (w) 79.6 57.7 67.4 71.3 22.8 52.3
Trimble 5606 (w) 87.8 59.9 67.5 62.4 23.9 54.6
Expert User Difference (w) 5.7 2.3 10.5 19.5 5.2 28.6
Algorithm Difference (w) 8.2 2.2 0.1 8.9 1.1 2.3
Expert User Error (%) 6.51 3.77 15.53 31.24 21.72 52.36
Algorithm Error (%) 9.33 3.66 0.09 14.32 4.41 4.13

via ground truth data (average expert user error < 16% and average algorithmic
error < 8%). Figures 12a and 12b show a comparison between the expert users
and algorithm, with respect to the ground truth data, of the averages across all
subjects for the ROM data. It should be noted that because the Trimble 5606 is a
real tracking system, and human motion is not ideal, instances where the patient
is not moving may not be conveyed with zero velocity in the ground truth data;
thus values that are approximately zero are categorized as non-movement.

Of particular importance are the comments made by the expert users when
attempting to determine the range of motion of the patients. Both users noted
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Table 5. Measurements of PAV for Lateral/Medial Exercise.

Subject A Subject B
Repetition 1 2 3 1 2 3
Expert User (w) 50.8 40.9 47.1 39.7 37.3 30.8
Algorithm (w) 48.0 39.3 65.4 34.1 40.2 274
Trimble 5606 (w) 51.3 43.8 65.9 36.5 34.5 31.1
Expert User Difference (w) 0.5 2.9 18.8 3.2 2.8 0.3
Algorithm Difference (w) 3.3 4.6 0.5 2.4 5.7 3.7
Expert User Error (%) 1.00 6.60 28.53 8.83 8.05 1.09
Algorithm Error (%) 6.48 10.42 0.74 6.51 16.62 11.97

Average Differences Across All Subjects for PAV Average Percentages Across All Subjects for PAV
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(a) Average Differences. (b) Average Percentage Errors.

Figure 12. Comparison between the expert users and algorithm, with respect to the ground truth data,
of the averages across all subjects for the PAV data.

that it was quite difficult to determine the exact location of Subject B’s arm due
to the fact that he was wearing a large blue sweater. One advantage that our
algorithm has is that regardless of the clothing that the patient is wearing, we can
still track the overall movement and obtain reasonable data.

6. Advantages and Disadvantages

When considering this approach for gathering physical therapeutic data, one has to
be knowledgeable of the limitations or potential concerns. Many physical therapists
use sensation or force-feedback as a method of assessing the patient’s current state
and determining the effects of the physical therapy sessions. Since our algorithm
focuses on non-contact assessments, it will not be possible to gather the important
information obtained from sensation analysis. This limitation in-turn creates a
concern as to whether or not this method will produce comparable effects to robotic
rehabilitation devices that incorporate force-feedback with subtle, unrecognizable
to the patient, changes that induce motor movements that the patient believes he
or she is incapable of achieving due to injury or disability. However, noting the
earlier references to sustained attention, it is believed that this approach will have
positive results in that it will provide a motivating factor for individuals during
the sessions. Thus, with an increase in motivation and attention, we hypothesize
that this will indeed produce comparable results to robotic rehabilitation devices
that incorporate force-feedback.

The use of a robotic platform for this specific application also reintroduces the
debate of robotics versus unembodied (i.e. simulated) agents. Specifically, what
are the benefits of using a robotic platform rather than a simulated agent such as
those that currently exist within the gaming realm (e.g. Nintendo Wii and Microsoft
Xbox)? For years, the goal of artificial life has been to move from simulation to
embodied systems. Two main reasons are that 1.) without regular validation on
real robots there is a great danger that much effort will go into solving problems
that simply do not come up in the real world and 2.) there is a real danger that
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programs which work well on simulated robots will completely fail on real robots
because of the differences in real world sensing and actuation (Brooks 1992). These
statements were true in the early 1990’s and are still prevalent today. If we stay
within the realm of simulated agents we may never reach fully autonomous robotic
placement within our society. The major role of simulated agents should be the
initial modeling of real robots. Human robot interaction, even at the simplest level,
enables researchers to gain valuable insight regarding robotic acceptance. For this
specific research, as it was stated earlier, robots have been shown to be engaging to
children both with and without disabilities. We hypothesize that having an agent
that is embodied in the real world increases the motivation and enthusiasm for
patients.

7. Conclusions and Future Work

Figure 13. Illustration of the robotic platform.

In this paper, an approach to matching child movements with robotic movements
for the purpose of evaluating child upper-arm rehabilitation exercises has been
discussed. Specifically, the physical therapeutic metrics range of motion and peak
angular velocity have been calculated via computer vision techniques and can be
utilized in a robotic system. When analyzing the data, one should note that the
Trimble 5606 captured data at a rate that is equivalent to 4fps, which is a bit on
the slow side, while our camera captured data at a rate of 15fps. Therefore, there
is approximately four times the amount of data points for our graphs then there
are for the ground truth data without any interpolation. With this in mind, there
is a potential issue in cases where the patient is moving at very high velocities (i.e.
there may be issues in tracking efficiency when using devices with low frame rate
capabilities). Ideally, most patients will move at a rate that is capable of being
tracked due to injury (i.e. relatively slowly). However, in this pilot study, patients
were not injured. This may give some insight into the high variances in percent
errors between the algorithmic and Trimble data such as those found in Tables 2
and 3. As such, the immediate future work consists of obtaining ground truth data
from a tracking device with a faster frame rate, giving us even greater accuracy.

Concurrently, the next step is to incorporate another physical therapy metric,
namely movement smoothness and apply each of these principles to other activities
such as reaching. One possible method of determining movement smoothness is to
analyze the acceleration of the patient’s motion over time, where drastic increases or
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decreases may signify a jittery motion. Ultimately, this will enable the final robotic
system to better assess the physical disability of the patient. Another seemingly
simplistic task is to decrease the processing time that is required to achieve accurate
results when using RANSAC. Because the algorithm requires a variable number of
iterations to achieve high accuracy (99% is used in this work), some compromise
between the number of iterations allowed, accuracy, and number of images available
may have to be forced in order to speed things up. Another component that will
decrease the processing time is use of categorical information. By allowing the
humanoid to categorize movements and store the data representing its own motion
into specific locations a prior, only one set of images (the input from the patient’s
exercise) will need to be captured and processed. The overall desire to decrease
time comes from the logical fact that children will become restless when required
to wait for extended periods when engaged in a turn-taking scenario.

The final step of this research is to equip a robotic platform, shown in Figure 13,
with a small camera and Gumstix Overo’™ Earth that will enable the robot to
perform its movements, video capture, and image processing completely on-board
(Brooks and Howard 2009). Currently, our vision processing is done on a separate
host computer. Once this phase is complete, the researchers intend to conduct
testing with physically injured children in realistic physical therapy scenarios.
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