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Abstract

In revenue management research and practice, demand models are used that describe how de-
mand for a seller’s products depends on the decisions, such as prices, of that seller. Even in
settings where the demand for a seller’s products also depends on decisions of other sellers, the
models often do not explicitly account for such decisions. It has been conjectured in the revenue
management literature that such monopoly models may incorporate the effects of competition,
because the parameter estimates of the monopoly models are based on data collected in the
presence of competition. In this paper we take a closer look at such a setting to investigate the
behavior of parameter estimates and decisions if monopoly models are used in the presence of
competition. We consider repeated pricing games in which two competing sellers use mathe-
matical models to choose the prices of their products. Over the sequence of games, each seller
attempts to estimate the values of the parameters of a demand model that expresses demand as
a function only of its own price using data comprised only of its own past prices and demand re-
alizations. We analyze the behavior of the sellers’ parameter estimates and prices under various
assumptions regarding the sellers’ knowledge and estimation procedures, and identify situations
in which (a) the sellers’ prices converge to the Nash equilibrium associated with knowledge of the
correct demand model, (b) the sellers’ prices converge to the cooperative solution, and (c) the
sellers’ prices have many potential limit points that are neither the Nash equilibrium nor the
cooperative solution and that depend on the initial conditions. We compare the sellers’ rev-
enues at potential limit prices with their revenues at the Nash equilibrium and the cooperative
solution, and show that it is possible for sellers to be better off when using a monopoly model
than at the Nash equilibrium.



1 Introduction

Revenue management (RM) models are used by many businesses to make operational pricing and

availability decisions. Even in settings with multiple competing sellers, each seller typically uses a

model as though the seller is a monopolist, and thus these models do not explicitly account for the

effects of competitors’ decisions. Sellers may consider competitive effects at a strategic level or may

sometimes account for competition in an ad hoc manner when making operational decisions, but in

many revenue management systems competition is not explicitly modeled at the operational level.

Phillips (2005, p. 59) states “There does not appear to be a single pricing and revenue optimization

system that explicitly attempts to forecast competitive response using game theory as part of its

ongoing operation.” Nevertheless, competitors’ decisions typically do interact with a seller’s own

decisions to affect sales and revenues. A seller may attempt to develop a demand model that takes

the effect of some competitors into account, but it is likely that there would remain competitors

whose effects are still not included in the model. For example, an airline may develop a model that

takes into account the effect of a competing airline’s prices on demand for its own tickets, but even

then the model may not include the effects of train ticket or rental car prices.

In revenue management practice, settings that involve competing sellers often have the following

elements:

[A] Each seller uses a model of demand or expected revenue as a function of its own decisions

(e.g., prices or booking limits). The model is incorrect in the sense that it does not explicitly

incorporate the effect of competitors’ decisions on demand or revenue.

[B] Each seller uses data comprised only of its own past decisions and its own past demands (or,

more accurately, sales) to estimate the parameters of its model.

[C] With the parameter estimates in hand, each seller then treats its model and the associated

parameter estimates as if they were correct and optimizes the objective of the model (usually

expected profit or expected revenue) to make a decision.

[D] As new data are obtained, each seller updates its parameter estimates with the hope of getting

better estimates and making better decisions.

Section 5.1.4.3 of Talluri and van Ryzin (2004) contains some comments on the ubiquity of

monopoly models in RM practice, and their Chapter 9 discusses RM forecasting. However, there

seems to be little, if any, discussion of the dynamics resulting from [A]–[D] in the RM literature.
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Given the widespread use of monopoly models, it is not surprising that much of the technical

literature on RM does not consider competition. There are some papers that consider competitive

settings in which sellers accurately model themselves and their competition, and that focus on

identifying pricing or inventory policies that constitute Nash equilibria. However, as mentioned

above, the use of models that explicitly include competition is not typical in RM practice. Also,

most work, with and without a model of competition, does not consider the possibility that the

decision maker’s model is incorrect; that is, the possibility that there may not exist parameter

values such that the resulting model constitutes an accurate representation of the decision problem

for which it is intended to be used. For example, it is often assumed that each time period’s demand

is a random variable with distribution that depends only on the current price of the seller, and

not on previous prices of the seller or on the prices of other sellers. However, in many applications

it is likely that demand depends on previous prices, for example, buyers may use previous prices

to forecast future prices, or buyers may exhibit behavioral traits such as the reference price effect.

Also, in many applications it is likely that the demand for a seller’s product depends on the prices

of other sellers. In spite of such modeling error being obviously possible and even being likely, most

RM research and applied work do not consider the possibility that the decision maker’s model may

be incorrect.

There is some work that considers models with unknown parameter values, e.g., unknown

demand distributions, but still the basic assumption is that there exist values of the parameters

that make the model an accurate representation of the decision problem. Much of the literature

assumes in addition that the correct parameter values are known by the decision maker. For

example, the probability distribution of demand is often assumed to be known for all potential

price settings. Hence, most revenue management literature can be viewed as focusing exclusively

on element [C] above. (We provide a literature review in Section 3.)

It is sometimes conjectured that, although revenue management models usually do not explic-

itly incorporate competition, they possibly implicitly incorporate competition through parameter

estimates that serve as inputs to the models. Specifically, the historical demand data used by a

seller to estimate demand for its own product as a function of its own decisions are influenced by

historical values of both its own price and competitors’ prices. Therefore, the conjecture is that

demand forecasts may gradually incorporate the effects of competition as more data are collected,

and the models that use those forecasts may consequently take implicit account of competition.

Talluri and van Ryzin (2004, p. 186) attribute the following idea to “conventional wisdom”: “[A]n
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observed historical price response has embedded in it the effects of competitors’ responses to the

firm’s pricing strategy. So for instance, if a firm decides to lower its price, the firm’s competitors

might respond by lowering their prices. With market prices lower, the firm and its competitors see

an increase in demand. The observed increase in demand is then measured empirically and treated

as the ‘monopoly’ demand response to the firm’s price change in a dynamic-pricing model — even

though competitive effects are at work.” The idea is also raised by Phillips (2005, p. 55), who notes

in a discussion of pricing and competition that historical effects of competition are built into an

individual seller’s estimate of its price-response function (the function that specifies its demand as

a function of just its own price). We call the conjecture that the effects of competition are implic-

itly captured in monopoly models estimated with observed data the Market Response Hypothesis.

To our knowledge, there has been no work in the RM literature that attempts to study to what

extent the Market Response Hypothesis is correct. Talluri and van Ryzin (2004, p. 186) also issue

a warning that the use of monopoly models calibrated with data that have embedded the effects of

competitors’ responses runs the risk of reinforcing “bad” equilibrium responses.

In this paper we will be particularly interested in understanding the long-run behavior of rev-

enue management systems in the presence of elements [A]–[D]. Do parameter estimates and prices

converge as more data is accumulated, and if so, to what? To what extent do estimated monopoly

models implicitly incorporate competition? Are sellers whose models take competition into account

better off than sellers whose models do not?

Our main results establish that prices and parameter estimates converge in some settings, that

the limit may correspond to the Nash equilibrium, or the cooperative solution at which the combined

revenue of the sellers is maximized, or another outcome, and that in some settings the long-run

behavior is unpredictable in the sense that there are many potential limits. The analysis reveals that

in some settings monopoly models implicitly incorporate competition through parameter estimates

in a rather limited fashion, and in other settings not at all. Although the monopoly models generate

correct expressions for expected demand at the limit prices, in many cases they provide incorrect

values for expected demand away from the limit prices. Thus, one should not rely on the Market

Response Hypothesis. Notwithstanding the warning cited above, we also find that in many cases,

the sellers are better off if they use incorrect models that do not explicitly incorporate competition

than they would be if they knew the precise expected demand as a function of prices and followed

the standard solution prescribed by the Nash equilibrium. In fact, when each is using an incorrect

model, it is possible for the sellers to unwittingly end up at the cooperative solution.
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The remainder of this paper is organized as follows. In Section 2 we introduce the framework

that will be used throughout the paper and provide an overview of our main results. In Section 3

we review the literature. Section 4 contains our main results. We present concluding remarks in

Section 5. Proofs that are not presented in the text can be found in the Appendix.

2 Preliminaries and Overview of Results

Consider a duopoly with two sellers, called seller 1 and seller −1. Each seller sells a product, and

the product of seller i will be called product i. Suppose each seller i chooses a price pi for product i,

and, in response, quantity di of product i is requested by buyers from seller i. In this paper we

focus on the case of linear demand, that is,

di = di(pi, p−i) + εi i = ±1 (1)

where

di(pi, p−i) = βi,0 + βi,ipi + βi,−ip−i i = ±1 (2)

is the expected demand for product i and εi is a random variable with mean zero. Throughout, we

assume that βi,0 > 0, βi,i < 0 and βi,−i ≥ 0 for i = ±1 and that

β1,1β−1,−1 > β1,−1β−1,1 . (3)

This condition means that each seller’s own price has greater effect on its demand than does the

other seller’s price. The expected revenue of seller i is

gi(pi, p−i) := pidi(pi, p−i) . (4)

Note that the sellers do not face any inventory or capacity constraints. Hence, the setting differs

from that of revenue management problems in which sellers typically have a fixed amount of initial

inventory to be sold. The prices that result from the sellers’ learning and use of incorrect models

will be compared with two benchmark pairs of prices, namely the Nash equilibrium pair of prices

and the total revenue maximizing cooperative pair of prices. These two benchmarks are given next,

before we introduce the sellers’ models.

The Competitive Solution. When the two sellers do not collude, a typical solution concept for

the problem is a Nash equilibrium (NE). In a (pure strategy) NE each seller chooses a price that
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is a best response to its competitor’s price. The best response of seller i when its competitor sets

price p−i, is given by

pi = argmax
pi

gi(pi, p−i) = −βi,0 + βi,−ip−i
2βi,i

(5)

Solving (5) simultaneously for i = ±1, it follows that the unique NE prices (pN−1, p
N
1 ) are given by

pNi =
β−i,0βi,−i − 2βi,0β−i,−i
4β−i,−iβi,i − β−i,iβi,−i

. (6)

The Cooperative Solution. Also of interest is the cooperative solution in which the sellers

collude to set prices that maximize the expected total revenue,

ḡ(p−1, p1) := g−1(p−1, p1) + g1(p1, p−1) . (7)

When 4β−1,−1β1,1 − (β−1,1 + β1,−1)
2 > 0, the first order conditions are necessary and sufficient to

maximize (7), and it follows that the resulting prices are

pCi =
β−i,0 (β−i,i + βi,−i)− 2βi,0β−i,−i

4β−i,−iβi,i − (β−i,i + βi,−i)
2 . (8)

As a simple check, it is straightforward to verify that ḡ(pC−1, p
C
1 ) ≥ ḡ(pN−1, p

N
1 ).

Modeling Error. The focus of this paper is the use of models that do not explicitly incorporate

competition. Specifically, we consider a situation in which each seller i uses the following monopoly

model for expected demand as a function of its own price only:

δi(pi) = αi,0 + αipi . (9)

Note that the model (9) of demand used by each seller is different from the actual demand func-

tion (2).

Modeling Error with Learning. Suppose that over a sequence of time periods the sellers face

repeated instances of the pricing game described above. The games (equivalently, time periods)

are indexed by k. In period k + 1, each seller i chooses a price pki for k = 0, 1, 2, . . . . These prices

yield demands (dk+1
−1 , dk+1

1 ), which are given as in (1) by

dk+1
i := di(p

k
i , p

k
−i) + εk+1

i , (10)

where di(·) is given by (2), {(εk−1, εk1) : k = 1, 2, . . .} is a martingale difference noise (E[εk+1
i |Fk] = 0

with probability 1 (w.p.1) for all k), and there is an M such that E[(εk+1
i )2|Fk] ≤ M w.p.1 for
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all k. Here, Fk denotes the history generated by (ε1−1, ε
1
1), . . . , (ε

k
−1, ε

k
1) and (p0−1, p

0
1). In revenue

management, such repeated decisions are typical; for example, airlines repeatedly offer flights from

the same origin to the same destination on the same day of the week and at the same time of day.

We consider the situation in which each seller i uses a monopoly model for expected demand

as a function of its own price only. Notwithstanding (10), each seller’s choice of pki is guided

by its use of the monopoly model (9). Of course each seller i must somehow estimate values

for the parameters αi,0 and αi. Each seller i generates estimates α̂k
i,0 and α̂k

i of αi,0 and αi for

period k + 1 based on the data the seller has accumulated up to that point: its own historical

price-demand data (p0i , d
1
i ), (p

1
i , d

2
i ), . . . , (p

k−1
i , dki ). The estimates α̂k

i,0 and α̂k
i yield an estimated

demand function, δ̂ki (pi) := α̂k
i,0 + α̂k

i pi. The construction of the estimates α̂k
i,0 and α̂k

i from

(p0i , d
1
i ), (p

1
i , d

2
i ), . . . , (p

k−1
i , dki ) is described later. We will mainly be interested in estimators that

are such that if the chosen prices converge, then the estimated expected demand (given by the

estimated demand function) at the chosen prices also converges to the actual expected demand at

the limit prices. We term this the demand consistency property. We will provide a precise definition

of the property later.

Once the estimates are determined, then each seller i chooses the price that maximizes its

estimated expected revenue; i.e., seller i solves maxpi

{
piδ̂

k
i (pi)

}
= maxpi

{
pi[α̂

k
i,0 + α̂k

i pi]
}
, which

yields price

pki = −
α̂k
i,0

2α̂k
i

(11)

provided that α̂k
i < 0. The general approach wherein decisions (here, the prices) are determined by

an optimization that treats parameter estimates as if they were correct is sometimes called certainty

equivalent control.

Market Response Hypothesis. The price of seller i affects the demand of seller −i, and there-

fore the prices of seller i may eventually affect the prices selected by seller −i, even when seller −i
does not observe the prices of seller i. Therefore, different prices for seller i may result in different

prices for seller −i. To represent this possibility that the price chosen by a seller may be different

depending on the price chosen by the other seller, suppose that the reaction of seller −i to the

pricing decision of the other seller i can be represented with a reaction function; if seller i sets price

pi, then seller −i will set price p−i(pi).

Next we give a few remarks and an example, and then we give a precise statement of the Market

Response Hypothesis. First, existence of a reaction function p−i(pi) does not imply that seller −i
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consciously tracks the pricing decisions of seller i and devises a response to those decisions. In fact,

reaction functions arise implicitly when the sellers use the learning approaches discussed in this

paper to estimate the parameters of their monopoly models (9), and use (11) to set their prices.

Second, a number of different reaction functions may be of interest depending on the amount of

data collected by seller −i both before seller i sets the price at pi and while seller i keeps the price

at pi. For example, suppose that seller −i uses the monopoly model (9), and after many demand

observations has settled on a price p◦−i. If seller i sets a price pi (that may or may not be different

from previous prices) over the next few time periods, then the price of seller −i is likely to remain

constant at p◦−i. In this case we may take the reaction function to be p−i(pi) = p◦−i. We consider

this and another reaction function later.

Given a reaction function p−i(pi), we say that the monopoly model of seller i captures compe-

tition if its parameters αi,0 and αi in (9) are set so that

δi(pi) = di(pi, p−i(pi)) for all pi. (12)

We can now state the Market Response Hypothesis as follows. When sellers estimate the parameters

of monopoly models with data collected under competition, their parameter estimates will converge

to a limit at which each seller’s monopoly model captures competition.

Here we do some preliminary analysis to understand under what conditions the Market Response

Hypothesis is plausible. Consider seller i. For its monopoly model to capture competition, the

reaction function p−i(pi) has to be affine, say p−i(pi) = γ0 + γ1pi. In that case, (12) holds if and

only if it happens to be that αi,0 = βi,0+βi,−iγ0 and αi = βi,i+βi,−iγ1. Thus, whether the Market

Response Hypothesis holds depends on the sellers’ parameter estimates αi,0 and αi of (9), as well as

their reaction functions (in addition to the true parameter values). Regarding the sellers’ parameter

estimates, in the rest of the paper we investigate the sellers’ estimation of their parameters and

the limits of their estimates in various settings. Regarding the sellers’ reaction functions, we will

consider short-run and long-run price reaction functions (to be introduced later), both of which

are affine and consistent with (11), and we will check whether they satisfy the Market Response

Hypothesis in combination with the limits of the sellers’ parameter estimates.

Overview of Main Results. In the remainder of the paper, we study the evolution of the prices

(11) under different assumptions on the estimators α̂k
i,0 and α̂k

i . The goal is to understand the

behavior of revenue management systems under elements [A]–[D] described in the previous section.

Our main results describe the long-run behavior of parameter estimates and prices when the sellers
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try to learn about the incorrect model (9). We consider three separate settings, which are studied

in Sections 4.1, 4.2, and 4.3. Here, we provide a summary of the three settings.

In the first setting, each seller i believes that αi in (9) is equal to βi,i, and tries to learn αi,0. This

represents a situation in which each seller understands how its own price affects its own demand,

but does not directly account for how its competitor’s price does. In this setting, we prove that

the estimates of αi,0 converge almost surely, from which it follows that the prices converge almost

surely as well. We also show that the limit of the prices is the Nash equilibrium associated with

knowledge of the correct demand model. Based on such a convergence result, one might hope that

in other settings reasonable learning methods will also lead to the Nash equilibrium, even if the

sellers’ models are incorrect.

However, this is not the case in our second setting, in which each seller i believes that αi,0 in (9)

is equal to βi,0, and tries to learn αi. This represents a situation in which each seller knows the

total market size (in the sense of knowing the intercept of the demand function), and tries to learn

how its own price affects demand, while failing to directly account for the effect of its competitor’s

prices. In this setting, the analysis is considerably more complicated than in the first, and we limit

our convergence analysis to “symmetric” sellers for which d−1(p−1, p1) = d1(p1, p−1) in (2). (Such

symmetric sellers will still generally have different parameter estimates and prices.) We again find

that the parameter estimates and prices converge almost surely. However, in contrast to the first

setting, the limit prices are not a Nash equilibrium. Rather, the limit prices turn out to be equal

to the cooperative solution. Although we do not have convergence results when parameters are

not symmetric, it is possible to identify necessary conditions for a pair of prices to be limit prices.

Using these necessary conditions, we can deduce that it is not generally the case that there will be

convergence to the cooperative solution when parameters are asymmetric. Nevertheless, we find

surprisingly that the sellers’ revenues at these potential limit prices are never Pareto inferior to the

NE so long as βi,−i 6= 0.

In the third setting, we consider asymmetric sellers, each of which uses least squares to estimate

both parameters in (9). Each seller i produces estimates α̂k
i,0 and α̂k

i of αi,0 and αi using least

squares with the data (p0i , d
1
i ), . . . , (p

k−1
i , dki ). In this case we consider deterministic systems, i.e.,

εki = 0 in (10), and show that prices converge (and, in fact, reach the limit in the fourth period

and thereafter remain there) if the initial prices satisfy certain conditions. Interestingly, the limit

prices depend on the initial conditions. It is notable that among the attainable limits are price

pairs that are Pareto superior and Pareto inferior to the Nash equilibrium. Moreover, both the
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Nash equilibrium and the cooperative solution can be obtained as such limits.

It turns out that the Market Response Hypothesis holds in some special cases, but (12) does not

hold in general, that is, monopoly models calibrated with data observed under competition do not,

in general, capture competition in the limit. The monopoly models in our study do incorporate

competition in some more limited ways. For instance, we will see that certain “equilibrium” prices

arise in the limit from the parameter estimation process. The monopoly models with the limits of

the estimates in place provide accurate values of the expected demand at those equilibrium prices

(but not at other prices).

It is important to put our results in perspective in relation to the existing literature. Our

models can be viewed as duopolies where each seller has an incorrect demand model and uses

certainty equivalent control to choose the price in each period. As we will discuss below, even

the setting of a true monopolist that knows the correct structure of the demand model and must

estimate its parameters is an active topic of research. There are fewer results for the analogous

duopoly problem in which both sellers know the correct structure of the demand model and combine

parameter estimation and reasonable price adjustment schemes. In an earlier version of this paper

we considered such a setting and showed that if both sellers use Cournot adjustment and certainty

equivalent control to choose prices in each time period, and if parameter estimates converge (not

necessarily to the correct values), then the chosen prices converge to a Nash equilibrium with respect

to the limit parameter estimates. However, even in the monopoly setting, parameter estimates may

not converge to the correct values if certainty equivalent control is used. Since the monopoly setting

is a special case of the duopoly setting in which one seller does not adjust prices, convergence of

parameter estimates to the correct values cannot be guaranteed in the duopoly setting in general

if certainty equivalent control is used. In view of the difficulty of problems in which sellers know

the correct structure of demand and try to estimate parameter values, it is not surprising that the

duopoly setting in which sellers estimate parameters of incorrect models poses significant challenges.

3 Literature Review

Our work is closely related to a series of papers by Alan Kirman on modeling error in duopoly

pricing. The papers consider repeated price competition between two sellers, each of which attempts

to learn parameters of the demand model (9), which he calls the “perceived model”. Kirman uses

the term “true model” to describe the actual relationship between prices and demands, and assumes
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that demands are deterministic linear functions of the prices of both sellers [εi = 0 in (1)].

In the first paper in the series, Kirman (1975) proves that if each of two symmetric sellers

knows the true slope of its own deterministic demand as a function of its own price, and estimates

only the intercept of its perceived model, then the sequence of price pairs chosen by the sellers

converges to the Nash equilibrium of the pricing game in which both sellers know the true model.

Interestingly, the dynamics of the price pairs turn out to be identical to those that arise when

each seller knows the true demand model (including the true parameter values) and chooses prices

according to fictitious play. Our Proposition 1 in Section 4.1 generalizes the convergence result of

Kirman (1975) to settings with asymmetric sellers that face random demand. The 1975 paper also

briefly discusses a situation in which each seller uses least squares with its own price-demand data

to estimate both the intercept and the slope of its perceived model. Here, the paper introduces the

notion of a “pseudo equilibrium” — combinations of prices and parameter estimates that generate

demand data such that neither seller will change its prices or estimates. Finally, the paper suggests,

based on a simulation study, that there is convergence to such a pseudo equilibrium, but that the

associated limit prices depend on the initial prices.

Kirman (1983) builds on the 1975 paper, and focuses on the case in which each of two symmetric

sellers uses least squares to estimate the intercept and slope of its perceived model. The main result

of the 1983 paper is to identify those price pairs at which both sellers will remain from the fourth

period onward, provided that the sellers set particular prices in the first three periods. The result

establishes that for the particular initial prices, the sellers’ prices do indeed converge and that the

limit depends on the prices in the first three periods. When the initial three periods’ prices are

chosen as suggested, then a pseudo equilibrium prevails from the fourth period onward. The paper

shows that although any pair of prices can be part of a pseudo equilibrium, only a certain subset

of price pairs can be part of such a limit pseudo equilibrium. It also conjectures that the only

possible limit prices are those in the identified subset, and cites the simulations of Kirman (1975)

and Gates et al. (1977) as showing that prices converge from arbitrary initial conditions. It leaves

open the issue of proving such convergence. Our Section 4.3 extends results of Kirman (1983) to

settings with asymmetric sellers.

Brousseau and Kirman (1992) take up the issue of convergence, and argue that prices, in fact, do

not converge when starting from arbitrary initial prices. They attribute the apparent convergence

seen in the previous simulation studies to the declining weights placed on new observations by the

sellers’ estimation, which cause prices and parameter estimates to change very slowly over periods.
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In addition, they argue that convergence occurs only when either (i) the first three periods’ prices

are chosen as in Kirman (1983), or (ii) the first two periods’ prices are chosen so that each seller’s

estimated demand curve from the third period onward is perfect in the sense that all its price-

demand pairs lie on the curve, including those from the first two periods. They refer to the latter

case as a perfectly self-sustained equilibrium.

Kirman (1995) provides an overview of his earlier papers, and also surveys related work. Recent

papers that consider the dynamics of duopoly or oligopoly price competitions and that focus on

some variation of modeling error include Schinkel et al. (2002), Tuinstra (2004), and Chiarella and

Szidarovszky (2005).

A related line of research in economics studies settings in which agents’ expectations influ-

ence the dynamics of an economic system. A review of this work can be found in Evans and

Honkapohja (2001). Much of this literature focuses on rational expectations equilibria, which can

be characterized as fixed points of mappings that relate agents’ perceptions of system dynamics and

actual system dynamics. This literature does not appear to have considered the types of nonlinear

equations that govern the dynamics of the sellers’ prices and parameter estimates that we study.

Our study can be viewed in the broad context of learning in games; see Fudenberg and Levine

(1998) for an overview. A considerable variety of learning strategies has been studied for games

in which competitors have access to the true model (i.e., there are no issues of modeling error or

parameter estimation) but do not know what the others will do. Well-known examples include

Cournot adjustment and fictitious play. In the context of our pricing problem, if the sellers choose

their prices using Cournot adjustment then the prices converge to the NE (a proof is available from

the authors). Likewise, if the sellers select their prices using fictitious play, then the prices converge

to the NE (see Kirman 1975 for a proof). Such results provide some justification for the use of

Nash equilibrium as a solution concept. Even if the sellers do not know what the others will do and

use simple rules to choose prices, the prices nevertheless converge to the NE. However, Cournot

adjustment and fictitious play require that firms know the true functional form (2) of the expected

demand as well as the specific values of the parameters. Even if sellers know the functional form

(2), they typically have to learn about their demand. This would involve generating estimates of

the parameters in (2) and updating the estimates as they accumulate data. It is an open question

whether prices still converge to NE under reasonable parameter estimation and price adjustment

methods, or whether the process can exhibit different behavior.

As indicated earlier, we are not aware of any research in the OR literature on RM that studies
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the effects of using models that do not take competition into account, in spite of the widespread use

of such seemingly flawed models. The closest research to this paper is the work on the spiral-down

effect by Cooper et al. (2006), who examine the long-run behavior of protection levels and forecasts

that are generated by the use of models that do not accurately account for customer choice among

fare classes. In a related paper, Lee et al. (2012) study newsvendor models in which the demand

depends on the inventory quantities but the dependence is ignored by the decision maker. The

paper analyzes the behavior of the dynamic optimization-estimation process when the empirical

distribution is used to forecast demand. Cooper and Li (2012) study a setup similar to Cooper

et al. (2006), but consider protection levels generated by a “buy-up” model. Besbes et al. (2010)

consider a single seller who wants to choose a price to maximize expected revenue, but who does not

know the true demand function. The seller restricts attention to a parameterized family of demand

functions, calculates a parameter value that gives the best fit to observed data, and then chooses

a price according to certainty equivalent control. A statistical procedure is proposed for testing

whether the chosen price has true objective value sufficiently close to the true optimal objective

value. The idea behind the approach is that the suitability of a model should be determined by

the quality of decisions it produces, rather than the extent to which the model reflects reality. The

approach allows possibly misspecified models. However, it does not consider the possibility that

the objective value in a period may depend not only on the decision in the same period, but also on

decisions in previous periods (e.g., because a competitor’s decision in the current period depends

on the seller’s decisions in previous periods).

Several recent papers consider robust versions of revenue management problems. For example,

Lim and Shanthikumar (2007) consider dynamic pricing problems in which the decision maker

knows only that the true model is within some specified distance, as measured by relative entropy,

from a nominal model. Lan et al. (2011) consider overbooking and allocation decisions with limited

information using ideas from competitive analysis of algorithms, and focus on obtaining policies

that yield the best worst-case performance. The paper also provides many additional references.

Other work in the OR literature considers revenue management problems with learning. For

instance, van Ryzin and McGill (2000) and Kunnumkal and Topaloglu (2009) use stochastic ap-

proximation approaches to determine booking policies for revenue management problems, and prove

that the obtained policies converge to an optimal policy. Such an approach does not require de-

mand forecasting, but the convergence results essentially require knowledge of the correct form of

the underlying objective function to correctly guide the direction of movement of the stochastic
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approximation iterates. These papers do not consider competition or modeling error.

Den Boer and Zwart (2014) consider a monopolist facing a linear demand function with unknown

parameters, which it estimates using linear regression. They show that prices chosen according to

certainty equivalent control can converge to a suboptimal value, and they propose what they term

controlled variance pricing, which they prove to ensure almost sure convergence of the prices to

the true optimal price. In addition, they provide bounds on the regret of the policy. Broder

and Rusmevichientong (2012) also consider a monopolist facing a demand model with unknown

parameters. They introduce an approach whereby the monopolist constructs maximum likelihood

estimates of the unknown parameters and alternates between periods of implementing the certainty

equivalent price and periods of implementing exploration prices. They provide bounds on the

regret of the policy. Harrison et al. (2012) study a Bayesian setting in which a monopolist has a

prior distribution on two possible demand models. They show that certainty equivalent control

can lead to incomplete learning, wherein the monopolist never learns which of the two demand

models is the correct one. If this occurs, then the monopolist’s chosen prices converge to an

uninformative — and suboptimal — price at which learning stops. They propose a method to

avoid such negative outcomes by modifying the certainly equivalent prices slightly to keep them

away from the uninformative price. Under the proposed method, they show that prices converge to

the optimal price and they provide bounds on the regret. These papers do not consider competition

or modeling error. Besbes and Zeevi (2009) consider a single instance of a dynamic pricing problem

(rather than repeated instances of a static pricing problem considered in this paper and the three

mentioned earlier in this paragraph) with an unknown demand model. They consider policies that

begin with a learning phase followed by an exploitation phase. They show that the proposed policies

are asymptotically optimal for large expected demands and large initial capacities. They compare

parametric and non-parametric variations of their method, and point out that the comparative loss

in performance that may come with implementing the non-parametric approach rather than the

parametric approach can be viewed as the cost paid to avoid model misspecification.

Finally, there is also a body of work in the OR literature that focuses on game theoretic

studies of revenue management and pricing problems. For example, Netessine and Shumsky (2005)

consider a setting in which two airlines compete by choosing booking limits for discount tickets,

and obtain conditions for the existence of a pure strategy Nash Equilibrium. Recent work that

focuses on dynamic pricing with competition includes Perakis and Sood (2006), Levin et al. (2009),

and Gallego and Hu (2014), among others. As evidenced by this growing literature, competition is
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an area of significant interest to the RM research community. Our work is distinguished from these

papers because it considers the interactions of estimation, optimization, and modeling errors.

4 Dynamics of Some Misspecified Models

In this section we study three different settings in which each seller i uses the incorrect demand

model δi(pi) = αi,0 + αipi given in (9) and attempts to learn the values of αi,0 (Section 4.1) or

αi (Section 4.2) or both (Section 4.3). In each of the three subsections, we describe the demand

consistency property and the market response hypothesis as they pertain to the considered setting.

We also present what we know about convergence of prices and parameter estimates, and we discuss

the effects of modeling error on the sellers’ revenues.

4.1 The Case with Known Slope

Consider a setting in which the sellers know (or believe) that the own-price coefficient αi in (9) is

equal to βi,i in (2), so that α̂k
i = βi,i for all k. Such a setting has been motivated in the economics

literature as the result of sellers performing price experimentation in a neighborhood of current

prices, see for example Silvestre (1977) and Tuinstra (2004). In neither of these papers nor here

is such experimentation modeled. Each seller i constructs an estimator α̂k
i,0 with observed data

(p0i , d
1
i ), . . . , (p

k−1
i , dki ). Recall that each seller i chooses price pki for period k+1 by maximizing its

estimated profit function piδ̂
k
i (pi) = pi

[
α̂k
i,0 + βi,ipi

]
, and thus, consistent with (11), it follows that

pki = −
α̂k
i,0

2βi,i
. (13)

Demand Consistency. We say that an estimator α̂k
i,0 has the demand consistency property if,

whenever the prices (pk−1, p
k
1) converge to some limit (p∞−1, p

∞
1 ) > 0 as k →∞, then the estimated

demand δ̂ki (p
k
i ) = α̂k

i,0+βi,ip
k
i converges to the expected demand at the limit prices, that is, δ̂ki (p

k
i )→

di(p
∞
i , p∞−i) (except perhaps on a set of probability zero). It follows that α̂k

i,0 → α̂∞i,0 := βi,0+βi,−ip
∞
−i,

and p∞i = −α̂∞i,0/(2βi,i). Note that in the limit the demand predicted by the estimated model agrees

with the actual expected demand di(p
∞
i , p∞−i) at the limit prices, and thus the seller’s estimated

model appears correct to the seller. Also, the seller perceives that an optimal price is being chosen.

Next we find the set of all potential limit points of a pair of estimators (α̂k
−1,0, α̂

k
1,0) with

the demand consistency property. Note that if (α̂k
−1,0, α̂

k
1,0) converges to a limit, then it follows

from (13) that (pk−1, p
k
1) also converges, so that the condition in the definition of the demand
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consistency property can be applied. It follows from α̂∞i,0 = βi,0 + βi,−ip
∞
−i and p∞i = −α̂∞i,0/(2βi,i)

for i = ±1 that the only possible limits of (α̂k
−1,0, α̂

k
1,0) are

α̂∞i,0 =
2βi,i (2βi,0β−i,−i − β−i,0βi,−i)

4β−i,−iβi,i − β−i,iβi,−i
(14)

with corresponding limit prices

p∞i =
β−i,0βi,−i − 2βi,0β−i,−i
4β−i,−iβi,i − β−i,iβi,−i

. (15)

The above expression for the limit prices coincides with the Nash equilibrium associated with

knowledge of the correct demand model given in (6). Also note that α̂∞i,0 = βi,0 + βi,−ip
∞
−i means

that the effect of the competitor’s price on the demand is swept into the estimated intercept

parameter.

Based on the demand model (9) of seller i, the seller’s observed intercept in time period k is

α̃k
i,0 := dki − βi,ip

k−1
i . Consider any estimator α̂k

i,0 with the (reasonable to the seller) property that

if the seller’s expected observed intercept di(p
k−1
i , pk−1−i ) − βi,ip

k−1
i converges to a limit, then the

intercept estimator α̂k
i,0 converges to the same limit. It is easy to verify that any such estimator

has the demand consistency property, and thus many estimators that would appear reasonable to

the seller have the demand consistency property.

Market Response Hypothesis. It is evident from (12) that whether or not the Market Re-

sponse Hypothesis holds depends on the reaction function p−i(pi). Below, we consider two different

reaction functions, both motivated by the following statement of the Market Response Hypothesis

from Phillips (2005, p. 55): “To the extent that competitors will behave in a similar fashion in the

future as they have in the past, the price-response function will be a fair representation of market

response — including competitive response.” We refer to the two reaction functions as the short-

run reaction function and the long-run reaction function. For both, we imagine that parameter

estimates and prices have converged and that seller i subsequently changes its price away from

its limit price p∞i , and we ask what will happen to the price of seller −i provided that seller −i
continues to “behave in a similar fashion in the future as (it has) in the past.” We emphasize

that this does not mean that seller i actually changes its price to some pi 6= p∞i or that it has an

incentive to do so. Rather, for the purpose of identifying a reasonable reaction function for seller −i
and evaluating the Market Response Hypothesis, we are merely asking the question what would

happen if seller i were to make such a change to price pi.
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If the sellers’ parameter estimates converge (this assumption gives the Market Response Hy-

pothesis some “benefit of the doubt” because convergence of the estimates is part of the hypothesis),

then the limits of the estimates and prices are given by (14) and (15). When the limit has been

“reached”, seller −i sets price p∞−i. Moreover, a hypothetical change of the price of seller i from p∞i

to some pi 6= p∞i would, in the short run after the limit has been reached, not cause much movement

in the parameter estimates of player −i. Hence, in the short run, the price of seller −i would remain

essentially fixed at p∞−i. This motivates the short-run reaction function of p−i(pi) = p∞−i.

In the limit, seller i has an estimated demand function given by δ̂∞i (pi) := α̂∞i,0+βi,ipi. It follows

from (14) and (15) that

δ̂∞i (pi) = βi,0 + βi,−ip
∞
−i + βi,ipi = di(pi, p

∞
−i) for all pi . (16)

Therefore, seller i has a correct estimate of its mean demand as a function of its own price if

the price of seller −i is held at p∞−i. That is, in the limit, the monopoly model δ̂∞i (pi) of seller i

captures competition for the short-run reaction function p−i(pi) = p∞−i. Hence, for this particular

reaction function, the Market Response Hypothesis holds, provided that parameter estimates do

indeed converge.

If one is interested in a longer time horizon during which seller −i will “behave in a similar

fashion in the future as (it has) in the past” after the limit has been reached, then it is appropriate to

consider a different, long-run reaction function. If the limit has been reached and thereafter seller i

repeatedly implements a price pi for many periods, then eventually the intercept estimate of seller −i
will move away from α̂∞−i,0. If the estimate re-converges, it will do so to ᾱ∞−i,0 = β−i,0 + β−i,ipi by

the demand consistency property. (To see this, observe that if the intercept estimate of seller −i
converges to some value ᾱ∞−i,0 then that seller’s price converges to p̄∞−i = −ᾱ∞−i,0/(2β−i,−i). The

demand consistency property then tells us that

ᾱ∞−i,0 + β−i,−ip̄
∞
−i = β−i,0 + β−i,−ip̄

∞
−i + β−i,ipi

from which it follows that ᾱ∞−i,0 = β−i,0+β−i,ipi.) Consequently, the price of seller −i will converge
to −(β−i,0 + β−i,ipi)/(2β−i,−i) by (13). In this case, it is natural to take the long-run reaction

function of seller −i to be p−i(pi) = −(β−i,0+β−i,ipi)/(2β−i,−i). For the long-run reaction function,

the monopoly model does not capture competition because δ̂∞i (pi) = βi,0 + βi,ipi + βi,−ip
∞
−i cannot

be equal to di(pi, p−i(pi)) = βi,0 + βi,ipi − βi,−i(β−i,0 + β−i,ipi)/(2β−i,−i) for all pi except in the

trivial case when β−i,i = 0, and therefore the Market Response Hypothesis does not hold.
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In conclusion, under competition, the monopoly demand model δ̂∞i (pi) := α̂∞i,0 + βi,ipi with

α̂∞i,0 given by (14) is a fair representation of market response in the short run after the limits have

been reached, but does not represent long-run market response. A seller may believe its monopoly

model has adequately incorporated the effects of competition, because “manual checks” through

price experimentation to see if observed demand matches predicted demand will initially not show

anything wrong. As time progresses, however, such a belief would turn out to be false.

Convergence. Consider the estimator that simply averages the observed intercepts:

α̂k
i,0 :=

1

k

k∑

j=1

α̃j
i,0 . (17)

It is easy to check that α̂k
i,0 is the seller’s least squares estimator of the parameter αi,0 when α̂k

i

is fixed to βi,i. It follows from a strong law of large numbers for martingales (Chow 1967) that,

if the sellers’ models were correct, then α̂k
i,0 in (17) would be a consistent estimator for αi,0. It

also follows that the estimator α̂k
i,0 has the demand consistency property. Thus the estimation

procedure is reasonable, given the seller’s demand model. Kirman (1975) showed that pki in (13)

converges to p∞i in (15) if estimator α̂k
i,0 in (17) is used in the case of symmetric sellers (βi,0 = β0,

βi,i = βe, βi,−i = βd for i = ±1) and deterministic demand.

Note that by (2), (10), (13), and (17), we have

α̂k
i,0 =

(
1− 1

k

)
α̂k−1
i,0 +

1

k

[
βi,0 −

βi,−i
2β−i,−i

α̂k−1
−i,0 + εki

]
.

It may be that α̂k
i,0 < 0 in which case pki will be negative. This is clearly unrealistic, so we will

assume that each seller projects its estimate onto the positive half-line. That is, rather than (17),

the intercept estimates will be

α̂k
i,0 := π

((
1− 1

k

)
α̂k−1
i,0 +

1

k

[
βi,0 −

βi,−i
2β−i,−i

α̂k−1
−i,0 + εki

])
. (18)

where π(x) = max{x, 0} for x ∈ R. Such post-processing from “reasonableness checks” on parame-

ter estimates is common in revenue management applications. Also observe that these projections

do not require any coordination between the sellers — each seller i simply replaces its own estimate

α̂k
i,0 by max{α̂k

i,0, 0}.
Next we look at the long-run behavior of the iterates in (18). Let F : R2 7→ R

2 be given by

F (x−1, x1) :=

(
β−1,0 −

β−1,1
2β1,1

x1, β1,0 −
β1,−1

2β−1,−1
x−1

)
=


 β−1,0

β1,0


+M


 x−1

x1


 ,
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where

M =


 0 −β−1,1

2β1,1

− β1,−1

2β−1,−1
0


 .

Then from (18),

(
α̂k
−1,0, α̂

k
1,0

)
= π̄

((
1− 1

k

)(
α̂k−1
−1,0, α̂

k−1
1,0

)
+

1

k

[
F
(
α̂k−1
−1,0, α̂

k−1
1,0

)
+
(
εk−1, ε

k
1

)])
,

where π̄(x−1, x1) := (π(x−1), π(x1)) for (x−1, x1) ∈ R
2. Note that (α̂∞−1,0, α̂

∞
1,0) given by (14) is

the unique fixed point of F , and that F is a contraction mapping if and only if the eigenvalues

of the matrix M are less than 1 in absolute value. The latter condition holds if and only if

|β−1,1β1,−1| < 4 |β1,1β−1,−1|, which holds by (3). Therefore, the following result is an immediate

consequence of Proposition A–1 in the Appendix.

Proposition 1. Consider the sequence {(α̂k
−1,0, α̂

k
1,0)} defined in (18). Then w.p.1, limk→∞ α̂k

i,0 =

α̂∞i,0 for each i = ±1, where α̂∞i,0 is given by (14).

If we do not consider projection and instead consider (17), then the same convergence follows by a

small modification of the proof of Proposition A–1. It follows immediately from Proposition 1 that

the sellers’ prices converge to the Nash equilibrium prices (15) and the sellers’ revenues converge

to those associated with the Nash equilibrium.

4.2 The Case with Known Intercept

In this section we study the case in which each seller knows (or believes) that the intercept coefficient

αi,0 in (9) is equal to βi,0 in (2), so that α̂k
i,0 = βi,0 for all k. Each seller i constructs an estimator

α̂k
i with observed data. That is, seller i estimates a linear demand model

δ̂ki (pi) = βi,0 + α̂k
i pi . (19)

Note that, based on the demand model of seller i, the seller’s observed slope in time period k is

α̃k
i := (dki −βi,0)/p

k−1
i . As before, seller i chooses the price pki that maximizes the revenue function

piδ̂
k
i (pi), which is

pki = − βi,0

2α̂k
i

(20)

consistent with (11).
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Demand Consistency. As before, we say that an estimator α̂k
i has the demand consistency

property if, whenever the prices (pk−1, p
k
1) converge to some limit (p∞−1, p

∞
1 ) > 0 as k →∞, then the

estimated demand δ̂ki (p
k
i ) = βi,0 + α̂k

i p
k
i converges to the expected demand at the limit prices, that

is, δ̂ki (p
k
i )→ di(p

∞
i , p∞−i). Therefore, α̂

k
i → α̂∞i := βi,i + βi,−ip

∞
−i/p

∞
i , and p∞i = −βi,0/(2α̂∞i ).

It follows that, for any pair of estimators (α̂k
−1, α̂

k
1), both with the demand consistency property,

the only possible limits are

α̂∞i = β∗i :=
βi,0 (β−i,iβi,−i − β−i,−iβi,i)

β−i,0βi,−i − βi,0β−i,−i
(21)

with corresponding limit prices

p∞i = − βi,0
2α̂∞i

=
β−i,0βi,−i − βi,0β−i,−i

2(β−i,−iβi,i − β−i,iβi,−i)
. (22)

Note that β∗i < 0 and p∞i > 0.

Market Response Hypothesis. Does the Market Response Hypothesis hold in the current

setting in which each seller estimates the slope of a monopoly model? To address this question,

we again consider short-run and long-run reaction functions. The short-run reaction function of

seller −i is p−i(pi) = p∞−i where p∞−i is given by (22). The motivation for this reaction function is

identical to that provided in Section 4.1 for the short-run reaction function discussed there.

If parameter estimates converge, then seller i has monopoly model δ̂∞i (pi) := βi,0 + α̂∞i pi in

the limit, where α̂∞i is given by (21). When both sellers implement their limit prices, the actual

expected demand for seller i is di(p
∞
i , p∞−i) = βi,0 + βi,ip

∞
i + βi,−ip

∞
−i = βi,0/2 and the model of

seller i predicts an expected demand of δ̂∞i (p∞i ) = βi,0 + α̂∞i p∞i = βi,0/2. However, in contrast

to (16) where the slope is known and the intercept is estimated, in this case δ̂∞i (pi) 6= di(pi, p
∞
−i)

for pi 6= p∞i (when βi,−i 6= 0). Thus, even if the price of seller −i were to be fixed at p−i(pi) = p∞−i,

the estimate of expected demand provided by the model of seller i would be correct only when the

price of seller i is p∞i , rather than at all prices as in Section 4.1. Hence, in the limit the monopoly

model of seller i does not capture competition in this setting for the short-run reaction function,

and therefore the Market Response Hypothesis does not hold.

We now turn to the long-run reaction function. If after reaching the limit, seller i repeat-

edly sets price pi, then in the long run, the slope estimate of seller −i will move away from

α̂∞−i = β∗−i, and if the estimate re-converges it will do so to β−i,0β−i,−i/(β−i,0 + 2β−i,ipi) by the

demand consistency property. Consequently, the price of seller −i will converge to −(β−i,0 +

2β−i,ipi)/(2β−i,−i), and thus we take the long-run reaction function of seller −i to be p−i(pi) =
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−(β−i,0 + 2β−i,ipi)/(2β−i,−i). For the long-run reaction function, it holds that di(pi, p−i(pi)) =

[βi,0 − β−i,0βi,−i/(2β−i,−i)] + [βi,i − β−i,iβi,−i/β−i,−i]pi, but the monopoly model gives δ̂∞i (pi) =

[βi,0]+[βi,0 (β−i,iβi,−i − β−i,−iβi,i) /(β−i,0βi,−i−βi,0β−i,−i)]pi. Hence the monopoly model of seller i

does not capture competition and the Market Response Hypothesis does not hold for the long-run

reaction function.

In conclusion, the monopoly demand model δ̂∞i (pi) := βi,0 + α̂∞i pi where α̂∞i is given by (21)

represents neither short-run nor long-run market response under competition.

Effects of Modeling Error on Revenues. Next we evaluate the long-run effects of modeling

error on the sellers’ revenues, by considering the revenues associated with the prices p∞i in (22)

that are selected when the slope estimates are α̂∞i in (21). We refer to the prices (p∞−1, p
∞
1 ) given

by (22) as the modeling error equilibrium (MEE).

The expected revenue of seller i at the MEE is given by gi(p
∞
i , p∞−i), where gi is given by (4).

Likewise, the expected revenue of seller i at the Nash equilibrium (NE) is given by gi(p
N
i , p

N
−i). Let

∆i :=
gi(p

∞
i , p∞−i)− gi(p

N
i , p

N
−i)

gi(p
N
i , p

N
−i)

denote the relative increase in expected revenue for seller i at the MEE in comparison to the NE.

If ∆i is positive (negative), then seller i is better (worse) off at the MEE than at the NE.

If both cross-price sensitivity terms are zero (if βi,−i = 0 for i = ±1), then the sellers do not

affect each other. In this case, it is easy to see that the MEE and the NE coincide and hence

∆i = 0 for i = ±1. If β−1,1 = 0 and β1,−1 > 0, then ∆−1 = 0 and calculations show that

g1(p
∞
1 , p∞−1)−g1(p

N
1 , p

N
−1) = (β−1,0β1,−1)

2/(16β2
−1,−1β1,1) < 0 so that ∆1 < 0. Likewise, if β1,−1 = 0

and β−1,1 > 0, then ∆1 = 0 and ∆−1 < 0. Hence, if one of the cross-price sensitivity terms is zero

and the other is not, then the NE is Pareto superior to the MEE. As we show below, this is the

only situation with known intercepts where the NE is Pareto superior to the MEE.

For the following comparison of the expected revenue under the NE and the MEE, assume that

βi,−i = −θβi,i for i = ±1 for some θ ∈ (0, 1); hence,

di(pi, p−i) = βi,0 + βi,ipi − θβi,ip−i i = ±1. (23)

Lemma A–1 in the appendix shows that this entails no loss of generality because we can always

re-scale the units of one seller’s price to arrive at demand functions with this form. Below, we show

β := (β−1,−1, β1,1) ∈ S := {(x, y) : x < 0, y < 0} as an argument of ∆i to indicate dependence on

β−1,−1 and β1,1.
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Next we investigate the set of parameter values for which the sellers are better (or worse) off at

the MEE than at the NE. Let Γi := {β ∈ S : ∆i(β) ≥ 0}. If β ∈ Γi, then seller i is better off at the

MEE than at the NE. Likewise, let ΓN
i := {β ∈ S : ∆i(β) ≤ 0} denote the region in which seller i

does better at the NE than at the MEE. Finally, let Γ=
i := {β ∈ S : ∆i(β) = 0} be the region where

both the MEE and the NE yield the same revenue for seller i. Let Γ∗ := (Γ−1∩Γ1)\(Γ=
−1∩Γ=

1 ) denote

the set of parameter values β for which the MEE is Pareto superior to the NE, let Γ∗i := Γi ∩ ΓN
−i

denote the region where seller i is better off at the MEE, but seller −i is better off at the NE, and

let ΓN := (ΓN
−1 ∩ ΓN

1 ) \ (Γ=
−1 ∩ Γ=

1 ) denote the region where the NE is Pareto superior to the MEE.

Figure 1 depicts ∆1(β) for the case with β−1,0 = 2, β1,0 = 1, and θ = 0.6. ∆−1(β) looks similar

to ∆1(β), with the role of the axes for β−1,−1 and β1,1 interchanged. Figure 2 relates to the same

example, and shows the set of (β−1,−1, β1,1) for which the MEE is Pareto superior to the NE. Note

that there is a large set of (β−1,−1, β1,1) where ∆−1(β),∆1(β) > 0. The figure also depicts the

sets Γ∗i for i = ±1. It is perhaps surprising to note that in the figure there are no (β−1,−1, β1,1)-

pairs at which the Nash equilibrium is Pareto superior to the modeling error equilibrium; that is,

ΓN = ∅. The proposition below shows that, remarkably, this is always the case. Hence, in view of

the proposition and Lemma A–1, the only setting with known intercepts where the NE is Pareto

superior to the MEE is when one of the cross-price sensitivities is zero and the other is not.

In preparation for the next result, let

T (θ) :=
(8 + θ2)θ + (4− θ2)

√
8 + θ2

8(1− θ2)
for θ ∈ (0, 1) .

Proposition 2. Suppose that di(pi, p−i) is given by (23) for θ ∈ (0, 1) for i = ±1. Given
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β−1,0, β1,0 > 0, let ρi := βi,0/β−i,0 = 1/ρ−i for i = ±1. Then

Γ∗ = {β ∈ S : ρ1T (θ)β−1,−1 ≤ β1,1 ≤ [ρ1/T (θ)]β−1,−1} 6= ∅

Γ∗i = {β ∈ S : βi,i ≥ [ρi/T (θ)]β−i,−i} 6= ∅ i = ±1

Γ=
i = {β ∈ S : βi,i = ρiT (θ)β−i,−i} 6= ∅ i = ±1

ΓN = ∅ .

Proposition 2 establishes that, as suggested by Figure 2, the region Γ∗ has linear boundaries. It

can be verified that T (θ) is increasing; therefore, it follows that the region Γ∗ = Γ∗(θ) is increasing

in θ. (In this paragraph we show the dependence of Γ∗ on θ.) Notably, Γ∗(θ) expands to all of S
as θ ↑ 1. On the other hand, the region Γ∗(θ) shrinks to Γ∗(0) := {β ∈ S :

√
2ρ1β−1,−1 ≤ β1,1 ≤

[ρ1/
√
2]β−1,−1} as θ ↓ 0. Note that the area of Γ∗(0) is positive for all ρ1 > 0. Consequently, there

is a range of parameter values Γ∗(0) ⊂ S such that if β ∈ Γ∗(0) then β ∈ Γ∗(θ) for all θ ∈ (0, 1).

The proposition also shows that when β−1,0 and β1,0 are close to each other, and β−1,−1 and β1,1

are close to each other, then both sellers are better off under the MEE than under the NE.

It is natural to ask to what extent the Pareto superiority of MEE to NE depends on the

assumption that the intercepts βi,0 are known. Later we show that the Pareto superiority of MEE

to NE can occur even in the more general case where the intercepts are unknown. However, in that

case it also may be that the NE is Pareto superior to the MEE, depending on the initial conditions.

Convergence. Next we consider the question of convergence of parameter estimates and prices.

Our goal is to show that the MEE is indeed achieved as the limit of the iterative estimation and

pricing procedure.

Consider a slope estimator α̂k
i that is a weighted average of the observed slopes (dj+1

i −βi,0)/p
j
i .

That is,

α̂k+1
i :=

k∑

j=0

wj+1,k+1α̃j+1
i

where wj+1,k+1 denotes the weight assigned to observed slope α̃j+1
i := (dj+1

i − βi,0)/p
j
i when the

observed data are (p0i , d
1
i ), . . . , (p

k
i , d

k+1
i ). For example, the ordinary least squares estimator corre-

sponds to wj+1,k+1 = (pji )
2/
∑k

ℓ=0(p
ℓ
i)

2. If {εki } is i.i.d., then it can be shown that the ordinary least

squares estimator has the demand consistency property. Here we consider the simpler estimator

with wj+1,k+1 = 1/(k + 1) for all j = 0, . . . , k, that is,

α̂k+1
i :=

1

k + 1

k∑

j=0

α̃j+1
i =

k

k + 1
α̂k
i +

1

k + 1
α̃k+1
i . (24)
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Our simulation experiments suggest that the limiting behavior of the estimators (24) is the same

as that of the least squares estimator. We consider (24) rather than the least squares estimator

for tractability. It follows from a strong law of large numbers for martingales (Chow 1967) that

the estimator α̂k
i in (24) has the demand consistency property, and that, if the sellers’ models were

correct, then α̂k
i would be a consistent estimator for αi as long as the seller chose the prices pki to

be asymptotically bounded away from zero.

It follows from (20), (24), and dk+1
i = βi,0 + βi,ip

k
i + βi,−ip

k
−i + εk+1

i that

α̂k+1
i = α̂k

i +
1

k + 1

(
βi,i + βi,−i

β−i,0
βi,0

α̂k
i

α̂k
−i

− 2
α̂k
i

βi,0
εk+1
i − α̂k

i

)
. (25)

Note that α̂k+1
i in (25) can take any real value. However, it follows from (20) that (i) positive

slope estimates yield negative prices, and (ii) slope estimates equal to zero yield infinite prices. To

avoid such values, suppose that each seller i chooses a number bi > 0, and whenever α̂k+1
i in (25)

is greater than −bi, the slope estimate is set equal to −bi. We will say that these adjustments

correspond to a “projection onto the −b-lower quadrant” of R2. Observe that such projections do

not require any coordination between the sellers. Let α̂k := (α̂k
−1, α̂

k
1) and εk := (εk−1, ε

k
1). Let

Hk+1
i := βi,i + βi,−i

β−i,0
βi,0

α̂k
i

α̂k
−i

− 2
α̂k
i

βi,0
εk+1
i − α̂k

i (26)

denote the direction of movement in α̂i before projection after period k+1, and letHk := (Hk
−1,H

k
1 ).

For each xi ∈ R, let Πi(xi) := min{xi,−bi} denote the projection used by seller i, and for x =

(x−1, x1), let Π(x) := (Π−1(x−1),Π1(x1)). Note that the component-wise projection Π(x) coincides

with the projection onto the −b-lower quadrant according to the usual Euclidean norm on R
2. Thus,

we consider slope estimates that satisfy

α̂k+1
i := Πi

(
α̂k
i +

1

k + 1
Hk+1

i

)
. (27)

Assume that each seller starts with an initial estimate α̂0
i ≤ −bi. Let Fk denote the σ-field

generated by α̂0, ε1, . . . , εk, and let

hki := E[Hk+1
i |Fk] = βi,i + βi,−i

β−i,0
βi,0

α̂k
i

α̂k
−i

− α̂k
i (28)

denote the conditional expected direction of movement in the estimate of seller i (before projection)

from point α̂k
i . For any x = (x−1, x1) ∈ R

2, let

hi(x) := βi,i + βi,−i
β−i,0
βi,0

xi
x−i
− xi , (29)
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let h(x) := (h−1(x), h1(x)), and let hk := (hk−1, h
k
1). Note that hk = h(α̂k). Let β̄∗ := (β∗−1, β

∗
1),

where β∗i is given by (21). Note that β̄∗ is the unique solution of h(α) = 0.

Next we restrict our attention to symmetric settings where βi,0 = β0, βi,i = βe, and βi,−i = βd

for i = ±1. Consistent with (3), we assume β0 > 0, βe < 0 ≤ βd, and |βe| > βd. Note that by

Proposition 2, in the symmetric case the MEE is Pareto superior to the NE when βd > 0. (If βd = 0

then the two notions of equilibria coincide.) To see this, observe that the pair (β−1,−1, β1,1) =

(βe, βe) lies on the diagonal line in S, which is in Γ∗(θ) for any θ ∈ (0, 1) because ρi = 1 for

symmetric sellers and T (θ) > 1. Under these symmetry assumptions, (26) becomes

Hk+1
i := βe + βd

α̂k
i

α̂k
−i

− 2
α̂k
i

β0
εk+1
i − α̂k

i (30)

For x = (x−1, x1) the expression (29) becomes

hi(x) := βe + βd
xi
x−i
− xi = βe + βd − xi + βd

(
xi
x−i
− 1

)
. (31)

Moreover, β∗i defined in (21) simplifies to β∗i = β∗ := βe + βd so that β̄∗ = (β∗, β∗).

The main result of this section is Theorem 1 below which shows that w.p.1, the iterates α̂k
i

converge to β∗ as k →∞. Although we do not have a proof of convergence for cases with asymmetric

sellers, simulations suggest that there is indeed convergence of {α̂k} to β̄∗. Note that for the iterates

α̂k
i to converge to β∗, it should hold that β̄∗ lies in the −b-lower quadrant, i.e., β∗ ≤ −bi for i = ±1.

To establish the result we shall impose additional assumptions on bi for i = ±1. The assumptions

hold, for instance, when β∗ ≤ −b−1 = −b1. Let bmin := min{b−1, b1} and bmax := max{b−1, b1}.

Theorem 1. Consider the sequence {α̂k} given by (30) and (27). Suppose that β∗ ≤ −bmax, and

that (
1 +

bmin

β∗

)2

≤ 1 +
bmax

β∗
. (32)

Assume that E[εk+1
i |Fk] = 0, and there is an M such that E[(εk+1

i )2|Fk] ≤M , w.p.1 for all k and

for each i. Then, w.p.1, for each i,

lim
k→∞

α̂k
i = β∗.

Figure 3 depicts the convergence described in the theorem for a deterministic system (εki ≡ 0).

Figure 4 shows a sample path with i.i.d. normal noise. Note that the limit point β̄∗ lies at the

intersection of two curves. One of the curves shows points x where h−1(x) = 0, that is, points α̂ at

which the expected direction of movement of the estimate α̂−1 of seller −1 is 0. The other curve

shows points x where h1(x) = 0. The intersection of the curves is the point β̄∗ at which h(β̄∗) = 0.
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β̄∗

0

α̂0

α̂1

α̂2

α̂3

α̂12, . . . , α̂500

α̂4

Figure 3: Trajectory of 500 iterates of {α̂k :=
(α̂k
−1, α̂

k
1)} of a deterministic process (εki ≡ 0)

with β0 = 1, βe = −1, βd = 0.6, b−1 = b1 =
0.05, α̂0 = (−0.3,−0.2). The slope estimates
{α̂k} converge to β̄∗ = (−0.4,−0.4).

β̄∗

0

α̂0

α̂1

α̂2

α̂3

Figure 4: Trajectory of 500 iterates of {α̂k :=
(α̂k
−1, α̂

k
1)} of a random process (εki i.i.d. nor-

mal, mean 0, standard deviation 0.5) with
β0 = 1, βe = −1, βd = 0.6, b−1 = b1 = 0.05,
α̂0 = (−0.3,−0.2). The slope estimates {α̂k}
converge to β̄∗ = (−0.4,−0.4).

It follows from Theorem 1 and (20) that w.p.1,

lim
k→∞

pki = − β0
2(βe + βd)

i± 1, (33)

so that the limit prices coincide with the cooperative solution (8). [Note that (8) simplifies to the

right side of (33) in the case of symmetric sellers; i.e., when βi,0 = β0, βi,i = βe, and βi,−i = βd

for i = ±1.] If each seller uses an incorrect model that neglects the effect of its competitor, and

thinks that it is estimating the sensitivity of its own demand to its own price, then in the limit the

sellers settle on prices that are not the Nash equilibrium associated with the correct model, and

that in fact maximize their combined revenue in the symmetric case. [In the Nash equilibrium in

the symmetric case, each price is equal to −β0/(2βe+βd), which is less than the limit price in (33).]

This is markedly different behavior than that which arises in a setting where each seller employs

a correct model with known parameters and must adjust its prices as it tries to learn about its

competitor’s prices (e.g., Cournot adjustment or fictitious play). As mentioned in Section 3, the

sellers’ prices converge to the Nash equilibrium under both Cournot adjustment and fictitious play.

It also differs from the behavior in Section 4.1, where prices also converge to the Nash equilibrium.

Intuition for the Theorem and Intermediate Results. The proof of Theorem 1 uses several

lemmas, some of which follow in the main text and some of which appear in the appendix. Here

25



we begin by providing some insight into one key piece of our argument that establishes that the

expected direction of movement of the iterates is — in a sense to be described below — toward β̄∗.

This portion of the argument requires particular care and relies on understanding the dynamics of

the iterates.

First we introduce a few definitions. Let ‖·‖ denote the usual Euclidean norm on R
2; i.e.,

‖x‖ = (x2−1 + x21)
1/2. Let D := {y ∈ R

2 : y−1 = y1} denote the diagonal line, and for x ∈ R
2 let

d(x) := min{‖x− y‖ : y ∈ D} denote the Euclidean distance from x to the diagonal line. Observe

that

[d(x)]2 =

∥∥∥∥(x−1, x1)−
(
x−1 + x1

2
,
x−1 + x1

2

)∥∥∥∥
2

=
1

2
(x1 − x−1)

2 . (34)

Define

Q :=


 1 −q
−q 1


 (35)

for q ∈ [0, 1), so that Q is positive definite. For any x ∈ R
2, let ‖x‖Q denote the Q-norm of x, i.e.

‖x‖Q :=
√

xTQx. Note that

‖x‖2Q = x2−1 + x21 − 2qx−1x1 = (1− q) ‖x‖2 + q2[d(x)]2 . (36)

Thus, the squared Q-norm of x ∈ R
2 is a convex combination of the squared Euclidean norm of x

and twice the squared Euclidean distance from x to the diagonal line D.
TheQ-norm is simply a tool we use to prove

β̄∗

0

Figure 5: The Q-norm with q = 0.5 and expected
directions of movement.

Theorem 1; it has no effect on the prices or the

sellers’ behavior. To understand the use of the

Q-norm, refer to Figure 5. In the figure, the

dotted concentric ellipses around β̄∗ correspond

to points that are equidistant from β̄∗, as mea-

sured by the Q-norm with q = 0.5. That is,

any two points x and y on a single ellipse sat-

isfy
∥∥β̄∗ − x

∥∥
Q
=
∥∥β̄∗ − y

∥∥
Q
. If q = 0, then the

Q-norm reduces to the usual Euclidean norm,

and the ellipses that represent points equidis-

tant to β̄∗ are circles centered at β̄∗. As the

value of q increases, the ellipses are “stretched” in the direction of the 45 degree line. For any two

points x and y such that (a) they are equidistant from β̄∗ as measured by the usual Euclidean norm
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and (b) x is closer than y to the diagonal, the Q-norm will measure x to be closer than y to β̄∗;

i.e.,
∥∥β̄∗ − x

∥∥
Q
≤
∥∥β̄∗ − y

∥∥
Q
. This reflects the idea that iterates close to the diagonal are close to

β̄∗, consistent with Figures 3 and 4.

The arrows in Figure 5 represent the expected directions h(·) given in (31); all arrows have

been scaled to the same size so that they show the direction, but not the magnitude of h(·). The

shaded regions (both dark and light) correspond to those points in R
2
− such that the direction

of movement is away, in the sense of Euclidean distance, from β̄∗. Note that there are points

in the −b-quadrant (the region “southwest” of the heavy dashed lines) for which the direction of

movement, as measured by Euclidean distance, is away from β̄∗. Hence, for this particular example

(and many others), it is not true that the expected direction of movement of the iterates is always

toward the limit point in the sense of the Euclidean inner product. The dark shaded regions in

Figure 5 correspond to those points in R
2
− such that the direction of movement is away, in the sense

of the Q-norm, from β̄∗. For such points, the arrows in the figure would point from smaller ellipses

to larger ellipses. (To avoid clutter only a few such arrows are shown.) The light shaded region

contains those points in R
2
− such that the direction of movement is (i) away from β̄∗ when distance

is measured by the Euclidean norm, but (ii) towards β̄∗ when distance is measured by the Q-norm

with q = 0.5. A key point is that as long as β∗ ≤ −bmax and some conditions hold, it is always

possible to ensure that the dark shaded regions lie entirely outside the −b-quadrant (in the figure,

the dark region is “north” and “east” of the heavy dashed lines) by taking q in (35) close enough

to 1. (In this particular example, taking q = 0.5 suffices.) This is made precise in Lemma 2 below.

Lemma 1 shows that the projection Π moves points closer in Q-norm to β̄∗. The result would

be simple if Π was the projection according to the Q-norm rather than component-wise projection.

Lemma 1. Suppose that β∗ ≤ −bmax and either β∗ + bmin = 0 or

q ≤ 1 +
bmax − bmin

β∗ + bmin
. (37)

Then
∥∥Π(x)− β̄∗

∥∥
Q
≤

∥∥x− β̄∗
∥∥
Q

for all x ∈ R
2. (38)

The next lemma shows that the expected direction of movement hk (without projection) makes

an acute angle, in the sense of the inner product 〈u, v〉 := uTQv, with the direction from α̂k to β̄∗.

Put differently, the expected direction of movement, as measured by the Q-norm, is toward β̄∗.
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Lemma 2. Suppose that β∗ ≤ −bmax, and that q ∈ [1 + bmin/β
∗, 1). Consider any point x =

(x−1, x1) in the −b-lower quadrant. Let y := β̄∗ − x denote the direction from x to β̄∗. Then

h(x)TQy ≥ ‖y‖2Q .

Proof of Theorem 1. We begin by showing that we can choose q so that Lemmas 1 and 2 can be

applied. Lemma 1 required either β∗+ bmin = 0 or q ≤ 1+ (bmax− bmin)/(β
∗+ bmin), and Lemma 2

required q ≥ 1 + bmin/β
∗. Thus we require either that β∗ + bmin = 0 and q ∈ [0, 1), or that

q ∈
[
1 +

bmin

β∗
, 1 +

bmax − bmin

β∗ + bmin

]
.

Next we show that the interval above is a nonempty subset of [0, 1) when β∗ + bmin < 0. Note

that 1 + bmin/β
∗ ∈ [0, 1) and 1 + (bmax − bmin)/(β

∗ + bmin) ∈ [0, 1). It is easy to check that (32) is

equivalent to (bmin)
2 ≤ −β∗ (2bmin − bmax). This and β∗ + bmin < 0 imply that

1 +
bmin

β∗
= 1 +

β∗bmin + (bmin)
2

β∗(β∗ + bmin)
≤ 1 +

−β∗ (bmin − bmax)

β∗(β∗ + bmin)
= 1 +

bmax − bmin

β∗ + bmin
.

Thus (32) and β∗ + bmin < 0 imply that the interval [1 + bmin/β
∗, 1 + (bmax − bmin)/(β

∗ + bmin)] of

considered values for q is a nonempty subset of [0, 1). Hence, we can choose q so that Lemmas 1

and 2 can be applied.

Next, let Zk :=
∥∥β̄∗ − α̂k

∥∥2
Q
. Then it follows from (27) and Lemma 1 that

Zk+1 =

∥∥∥∥β̄
∗ −Π

(
α̂k +

1

k + 1
Hk+1

)∥∥∥∥
2

Q

≤
∥∥∥∥β̄
∗ −

(
α̂k +

1

k + 1
Hk+1

)∥∥∥∥
2

Q

= Zk − 2

k + 1
(Hk+1)TQ

(
β̄∗ − α̂k

)
+

(
1

k + 1

)2

(Hk+1)TQHk+1.

Thus

E

[
Zk+1 | Fk

]
≤ Zk − 2

k + 1
E

[
Hk+1

∣∣∣ Fk
]T

Q
(
β̄∗ − α̂k

)

+

(
1

k + 1

)2

E

[
(Hk+1)TQHk+1

∣∣∣ Fk
]
. (39)

It follows from Lemma 2 that

E

[
Hk+1

∣∣∣ Fk
]T

Q
(
β̄∗ − α̂k

)
= (hk)TQ

(
β̄∗ − α̂k

)
≥

∥∥∥β̄∗ − α̂k
∥∥∥
2

Q
. (40)
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In addition, Lemma A–2 in the Appendix establishes the existence of constants A and B such that

E
[
(Hk+1)TQHk+1

∣∣ Fk
]
≤ A+B

∥∥β̄∗ − α̂k
∥∥2
Q
. Using this fact and (40), it follows from (39) that

E

[
Zk+1 | Fk

]
≤ Zk − 2

k + 1

∥∥∥β̄∗ − α̂k
∥∥∥
2

Q
+

(
1

k + 1

)2(
A+B

∥∥∥β̄∗ − α̂k
∥∥∥
2

Q

)

=

[
1 +

(
1

k + 1

)2

B

]
Zk +

(
1

k + 1

)2

A− 2

k + 1
Zk.

Finally, by applying Lemma A–3 in the Appendix with

Bk =

(
1

k + 1

)2

B, Ck =

(
1

k + 1

)2

A, Dk =
2

k + 1
Zk,

it follows that there is a finite random variable Z such that w.p.1, Zk → Z and
∑

k D
k <∞. Next

we show that Z = 0 w.p.1. Consider any ω such that Z(ω) 6= 0, i.e., Z(ω) > 0. Then, for all k

sufficiently large, Zk(ω) > Z(ω)/2, which implies that
∑

k D
k(ω) =∞. Hence, Z = 0 w.p.1. �

4.3 The Case with Unknown Intercept and Unknown Slope

In this section, we consider the situation in which each seller i assumes that demand has the

form (9), and estimates both parameters αi,0 and αi.

Demand Consistency. It can be shown that for any pair of prices (p∞−1, p
∞
1 ) such that p∞i 6= 0

and di(p
∞
i , p∞−i) 6= 0 for i = ±1, there exist parameter estimates (α̂∞i,0, α̂

∞
i ) = (2di(p

∞
i , p∞−i),−di(p∞i , p∞−i)/p

∞
i ),

i = ±1, such that the estimated demand and the expected demand at prices (p∞−1, p
∞
1 ) are

equal, and the prices p∞i are consistent with the parameter estimates (α̂∞i,0, α̂
∞
i ), i = ±1, that

is, δ̂∞i (p∞i ) = α̂∞i,0 + α̂∞i p∞i = di(p
∞
i , p∞−i) = βi,0 + βi,ip

∞
i + βi,−ip

∞
−i and p∞i = −α̂∞i,0/(2α̂∞i ) for

i = ±1. Thus, in this case, the demand consistency property allows infinitely many potential limit

points.

Convergence. In this section we consider the ordinary least squares estimates. To simplify the

analysis, throughout this section we assume that βi,−i > 0 for i = ±1, and also that demand is

deterministic, i.e., εki ≡ 0.

After period k, the estimated demand model of seller i is

δ̂ki (pi) = α̂k
i,0 + α̂k

i pi (41)

where α̂k
i,0 and α̂k

i are the least squares estimates with the data pairs (p0i , d
1
i ), . . . , (p

k−1
i , dki ). Seller i

then chooses price

pki = −
α̂k
i,0

2α̂k
i

(42)
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as long as α̂k
i < 0; see (11). If α̂k

i ≥ 0 then the problem maxpi piδ̂
k
i (pi) is unbounded and then the

iterative procedure ends. Here, unlike in the previous section, we do not consider projected slope

estimates. Next, each seller i observes its demand

dk+1
i = di(p

k
i , p

k
−i) = βi,0 + βi,ip

k
i + βi,−ip

k
−i . (43)

Thereafter, each seller updates its least squares estimate of (41), and the process repeats.

Let us study the dynamics of pki and dki . Suppose that each seller i has observed price-quantity

pairs (p0i , d
1
i ), . . . , (p

k
i , d

k+1
i ) by the end of period k + 1. First we write pk+1

i as a function of these

past observations. To do so, it is useful to define the following quantities:

pk+1
i :=

1

k + 1

k∑

ℓ=0

pℓi =
k

k + 1
pki +

1

k + 1
pki

d
k+1
i :=

1

k + 1

k+1∑

ℓ=1

dℓi =
k

k + 1
d
k
i +

1

k + 1
dk+1
i

p2
k+1

i :=
1

k + 1

k∑

ℓ=0

(pℓi)
2 =

k

k + 1
p2

k

i +
1

k + 1
(pki )

2

pd
k+1
i :=

1

k + 1

k+1∑

ℓ=1

pℓ−1i dℓi =
k

k + 1
pd

k
i +

1

k + 1
pki d

k+1
i

ppk+1 :=
1

k + 1

k∑

ℓ=0

pℓip
ℓ
−i,

where pki is given by (42) and dk+1
i is given by (43). It follows from (43) that

d
k+1
i = βi,0 + βi,ip

k+1
i + βi,−ip

k+1
−i

pd
k+1
i = βi,0p

k+1
i + βi,ip2

k+1

i + βi,−ipp
k+1.

Moreover, the familiar normal equations for linear regression yield

α̂k
i =

pd
k
i − pki d

k
i

p2
k
i −

(
pki
)2 = βi,i + βi,−i

ppk − pki p
k
−i

p2
k
i −

(
pki
)2 (44)

α̂k
i,0 = d

k
i − α̂k

i p
k
i = βi,0 + βi,−i

pk−ip
2
k

i − pki pp
k

p2
k

i −
(
pki
)2 (45)

and then we can use (42) to express pki as a function of pki , p
k
−i, p

2
k

i , and ppk.

Next, let

rki :=
ppk − pki p

k
−i

p2
k
i −

(
pki
)2 (46)
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denote the ratio in (44). Then, we can write the parameter estimates in (44) and (45) as

α̂k
i = βi,i + βi,−ir

k
i (47)

α̂k
i,0 = βi,0 + βi,−i

(
pk−i − pki r

k
i

)
. (48)

Similarly, we can write the prices pki as

pki = −
α̂k
i,0

2α̂k
i

= −βi,0 + βi,−i
(
pk−i − pki r

k
i

)

2
(
βi,i + βi,−irki

) . (49)

A useful interpretation of rki is as follows: for a fixed k, let (X−1,X1) denote a bivariate random

vector that takes the values of the k empirically observed price pairs {(p0−1, p01), . . . , (pk−1−1 , pk−11 )}
each with probability 1/k. Then

rki =
Covk(Xi,X−i)

Vark(Xi)
, (50)

where the expectations in Covk and Vark are taken with respect to the empirical measure introduced

immediately above (50). Note that the expression in the denominator of (46) is Vark(Xi), which

is equal to zero if and only if p0i = · · · = pk−1i . Therefore we assume that the initial prices satisfy

p0i 6= p1i , which ensures that rki is well defined for all k.

Also note that

rk−1r
k
1 =

[
Covk(X−1,X1)

]2

Vark(X−1)Var
k(X1)

=
[
Corrk(X−1,X1)

]2

and hence

0 ≤ rk−1r
k
1 ≤ 1 for all k. (51)

Moreover, it follows that rk−1r
k
1 = 1 if and only if all k pairs (p0−1, p

0
1), . . . , (p

k−1
−1 , pk−11 ) lie on a

straight line in R
2. This, of course, is the case at k = 2. Also, rk−1r

k
1 = 0 if and only if rk−1 = 0 and

rk1 = 0 — this follows from the fact that rki = 0⇔ Covk(X−1,X1) = 0.

Equation (49) relates the prices pki to the empirical mean, variance, and covariance of the

previous prices. It follows from (49) that

rki =
βi,0 + βi,−ip

k
−i + 2βi,ip

k
i

βi,−i
(
pki − 2pki

) . (52)

To study the asymptotic behavior of pki , we first characterize potential limits. Suppose that the

prices (pk−1, p
k
1) converge to some limit (p∗−1, p

∗
1) > 0 as k →∞. Then it follows from (52) that

rki → r∗i =
βi,0 + βi,−ip

∗
−i + 2βi,ip

∗
i

−βi,−ip∗i
(53)
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for i = ±1. It follows from (51) that

0 ≤ r∗−1r
∗
1 ≤ 1 (54)

Moreover, the condition α̂k
i < 0 for all k and (47) imply that

r∗i ≤ −βi,i
βi,−i

, i = ±1. (55)

Note that (53) can be written as a linear system in (p∗−1, p
∗
1):

βi,−ip
∗
−i + (βi,−ir

∗
i + 2βi,i) p

∗
i = −βi,0 , i = ±1. (56)

As shown in the appendix, if (55) holds, then the linear system is nonsingular, and yields the

following solution for (p∗−1, p
∗
1):

p∗i = pi(r
∗
−1, r

∗
1) (57)

where

pi(r−1, r1) :=
−2βi,0 β−i,−i + β−i,0 βi,−i − βi,0 β−i,i r−i

4β−i,−i βi,i + 2β−i,−i βi,−i ri + 2βi,i β−i,i r−i − β−i,i βi,−i (1− r−i ri)

Let

R :=

{
(r−1, r1) : 0 ≤ r−1r1 ≤ 1, ri ≤

−βi,i
βi,−i

, i = ±1
}

P := {(p−1(r−1, r1), p1(r−1, r1)) : (r−1, r1) ∈ R}

that is, R is the set of all pairs (r−1, r1) that satisfy (54) and (55), and P is the set of potential

limit prices. It is shown in the appendix that pi(r−1, r1) > 0 for all (r−1, r1) ∈ R, and thus

(p−1, p1) > 0 for all (p−1, p1) ∈ P. Also, the steps for deriving (57) from (56) can be reversed,

and thus it follows that for any (p−1, p1) ∈ P there exists a unique pair (r−1, r1) ∈ R, that is,

p(r−1, r1) := (p−1(r−1, r1), p1(r−1, r1)) is a bijection from R to P. Thus, if such (p∗−1, p
∗
1) is the

limit of (pk−1, p
k
1), then the unique pair (r∗−1, r

∗
1) = p−1(p∗−1, p

∗
1) that satisfies (56) must be the limit of

(rk−1, r
k
1), and thus must satisfy (54) and (55). Proposition 3 below summarizes the characterization

of potential limit points derived above.

Proposition 3. Suppose that the prices (pk−1, p
k
1) converge to some limit (p∗−1, p

∗
1) as k → ∞ and

p∗i > 0 for i = ±1. Then (p∗−1, p
∗
1) ∈ P. Associated with (p∗−1, p

∗
1) there is a unique pair (r∗−1, r

∗
1)

that satisfies (54), (55) and (56), and that is the limit of (rk−1, r
k
1) as k →∞.
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Important questions are: (1) do the prices converge, and if so, (2) is the limit (p∗−1, p
∗
1) uniquely

determined by the β-parameters, or are multiple limits (p∗−1, p
∗
1) ∈ P possible, depending on the

initial prices? Below we show that almost all points in P are possible limit points. Specifically,

we show that for almost all points (p∗−1, p
∗
1) ∈ P, there are initial conditions such that the prices

become invariant and equal to (p∗−1, p
∗
1) after a finite number of periods. To demonstrate this, we

introduce some terminology. We say the process is stationary at period k0 if for both i = ±1 it

holds that rki = rk0i and pki = pk0i for all k ≥ k0. For k0 ≥ 2 we shall use the following conditions:

pk0i = pk0i (58)

and
pk0−i − pk0−i

pk0i − pk0i
= rk0i and pk0i 6= pk0i . (59)

The following lemma gives necessary and sufficient conditions for the process to be stationary.

Lemma 3. The process is stationary at period k0 if and only if either (58) holds for both i = ±1
or (59) holds for both i = ±1. Moreover, if the process is stationary with rk0−1r

k0
1 < 1, then (58)

must necessarily hold for both i = ±1.

Using Lemma 3, we show in Proposition 4 below that the process can become stationary at

most of the potential limit prices (p∗−1, p
∗
1) ∈ P. The only exceptions are the following:

1. The points (p∗−1, p
∗
1) ∈ P corresponding to (r∗−1, r

∗
1) such that r∗−1r

∗
1 = 0 but either r∗−1 6= 0 or

r∗1 6= 0. It follows from the comment after (51) that, if the system is stationary at period k0

with rk0−1r
k0
1 = 0, then it must hold that r∗−1 = rk0−1 = r∗1 = rk01 = 0.

2. The points (p∗−1, p
∗
1) ∈ P corresponding to (r∗−1, r

∗
1) such that r∗i = −βi,i/βi,−i for i = −1 or

i = 1, since it follows from (47) that in those cases α̂k0
i = βi,i + βi,−ir

k0
i = βi,i + βi,−ir

∗
i = 0

and hence the iterative procedure stops [cf. remark after (42)].

The exceptions above could be limit values but not stationary ones. Thus, condition (54) is replaced

with

either r∗−1 = r∗1 = 0 or 0 < r∗−1r
∗
1 ≤ 1 (60)

and condition (55) is replaced with

r∗i <
−βi,i
βi,−i

, i = ±1. (61)
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← p−1 →

↑

p1
↓

(0, 0)

Nash Equilibrium

Cooperative Solution

Figure 6: The shaded region is the set
P ′ of stationary price pairs, (β−1,0 =
1.1, β−1,−1 = −2.0, β−1,1 = 0.7, β1,0 =
1.0, β1,1 = −1.0, β1,−1 = 0.5).

← g−1(p−1, p1)→

←
g
1
(p

1
,p

−
1
)
→

(0, 0)

Nash Equilibrium

Cooperative Solution

Figure 7: The shaded region is
the set of stationary revenue pairs
{(g−1(p−1, p1), g1(p1, p−1)) : (p−1, p1) ∈ P ′},
(β−1,0 = 1.1, β−1,−1 = −2.0, β−1,1 =
0.7, β1,0 = 1.0, β1,1 = −1.0, β1,−1 = 0.5).

Let

R′ :=
{
(r−1, r1) ∈ R

2 : (60) and (61) hold
}

P ′ :=
{
(p−1(r−1, r1), p1(r−1, r1)) : (r−1, r1) ∈ R′

}

Proposition 4. For any (p∗−1, p
∗
1) ∈ P ′ there exist initial points (pk−1, p

k
1), k = 0, 1, 2, such that the

process becomes stationary at k0 = 3 with pk0i = p∗i , i = ±1.

Kirman (1983, Proposition 4) proved a similar result for symmetric sellers, but did not cover

the case analogous to our condition r∗−1 = r∗1 = 0, which corresponds to the Nash equilibrium. [One

can see that r∗−1 = r∗1 = 0 yields the Nash equilibrium by plugging r∗−1 = r∗1 = 0 into (57) and

comparing with (6).] Brousseau and Kirman (1992) re-state Proposition 4 of Kirman (1983) and

include without proof the Nash equilibrium as a stationary price pair.

For a particular example with asymmetric sellers, Figure 6 shows the set P ′ of stationary price

pairs identified in Proposition 4. A similar figure for symmetric sellers appears in Kirman (1983).

It is interesting to note that both the Nash equilibrium (pN−1, p
N
1 ) and the cooperative solution

(pC−1, p
C
1 ) are stationary price pairs. Figure 7 shows the set of revenue pairs corresponding to the

price pairs in Figure 6; i.e., it shows {(g−1(p−1, p1), g1(p1, p−1)) : (p−1, p1) ∈ P ′}. It is interesting

to note that there is a portion of that set in which the revenues are Pareto superior to those

associated with the Nash equilibrium, as well as a portion in which the revenues are Pareto inferior
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to those associated with the Nash equilibrium.

Market Response Hypothesis. As before, we determine necessary conditions for the Market

Response Hypothesis to hold. Suppose that the sellers’ parameter estimates converge. Then it

follows from (47) and (48) that

α̂∞i = βi,i + βi,−ir
∞
i

α̂∞i,0 = βi,0 + βi,−i
(
p∞−i − p∞i r∞i

)
.

The monopoly demand model of seller i captures competition if δ̂∞i (pi) = di(pi, p−i(pi)) for all pi,

that is, if

α̂∞i,0+α̂∞i pi = βi,0+βi,−i
(
p∞−i − p∞i r∞i

)
+(βi,i + βi,−ir

∞
i ) pi = βi,0+βi,ipi+βi,−ip−i(pi) for all pi .

Thus, unless βi,−i = 0, it is necessary that

p−i(pi) = p∞−i − p∞i r∞i + r∞i pi for all pi .

Next, consider the short-run reaction function p−i(pi) = p∞−i. It follows that the monopoly demand

model of seller i captures competition for the short-run reaction function if r∞i (pi − p∞i ) = 0 for

all pi, that is, r∞i = 0. Next, recall that r∞i = 0 for i = ±1 if and only if the limit prices

(p∞−1, p
∞
1 ) are the Nash equilibrium prices (pN−1, p

N
1 ). Thus, the Market Response Hypothesis holds

for the short-run reaction function if and only if the sellers’ parameter estimates converge and their

corresponding prices converge to the Nash equilibrium prices. Since the pair of Nash equilibrium

prices is only one point in the set P of possible limit prices, it would seem to be a rare possibility

for the Market Response Hypothesis to hold for the short-run reaction function.

Next, consider the long-run reaction function. As before, suppose that the sellers’ parameter

estimates converge, and that after reaching the limit, seller i repeatedly sets price pi. Then, in the

long run, the estimates of seller −i will move away from (α̂∞−i,0, α̂
∞
−i). It is difficult to determine

whether the estimates of seller −i “re-converge” because the behavior of these estimates may depend

on the subset of the data collected by seller −i up to that point that is used in the estimation. In

the remainder of this discussion we consider the case in which the estimates of seller −i converge
to values that give the correct slope and intercept of the expected demand of seller −i when seller i

fixes its price at pi, that is, the estimates of seller −i converge to

ᾱ∞−i = β−i,−i

ᾱ∞−i,0 = β−i,0 + β−i,ipi .
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(It is easy to see that the estimates of seller −i converge to these values if seller −i discards the

old data obtained before seller i fixes its price at pi.)

With the above estimates, the corresponding price of seller −i is

p−i(pi) = −
ᾱ∞−i,0
2ᾱ∞−i

= −β−i,0 + β−i,ipi
2β−i,−i

. (62)

The resulting demand of seller i is

di(pi, p−i(pi)) = βi,0 + βi,ipi + βi,−ip−i(pi) =

(
βi,0 −

β−i,0βi,−i
2β−i,−i

)
+

(
βi,i −

β−i,iβi,−i
2β−i,−i

)
pi

The monopoly demand model of seller i captures competition for the reaction function (62) if and

only if

α̂∞i,0 + α̂∞i pi =

(
βi,0 −

β−i,0βi,−i
2β−i,−i

)
+

(
βi,i −

β−i,iβi,−i
2β−i,−i

)
pi for all pi ,

that is, if and only if

α̂∞i,0 = βi,0 −
β−i,0βi,−i
2β−i,−i

(63)

α̂∞i = βi,i −
β−i,iβi,−i
2β−i,−i

. (64)

It follows from (47) and (64) that a necessary condition for the model of seller i to capture compe-

tition for the reaction function (62) is that

r∞i = − β−i,i
2β−i,−i

. (65)

Substitution of expression (65) for r∞i into (56) gives

βi,−ip
∞
−i +

(
2βi,i −

β−i,iβi,−i
2β−i,−i

)
p∞i = −βi,0 . (66)

Also, it follows from (48), (63), and (65) that another necessary condition is that

2β−i,−ip
∞
−i + β−i,ip

∞
i = −β−i,0 . (67)

It follows from (66) and (67) that a necessary condition for the model of seller i to capture compe-

tition is that

p∞−i =
2βi,0β−i,iβ−i,−i − 4β−i,0β−i,−iβi,i + β−i,0β−i,iβi,−i

4β−i,−i (2β−i,−iβi,i − β−i,iβi,−i)

p∞i =
β−i,0βi,−i − 2βi,0β−i,−i

2 (2β−i,−iβi,i − β−i,iβi,−i)
.

Note that the point (p∞−1, p
∞
1 ) satisfying the necessary condition above is only one point in P, and

thus it seems a rare outcome for the model of seller i to capture competition. In addition, the
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necessary conditions for the models of sellers i and −i to capture competition cannot be satisfied

simultaneously, and thus the Market Response Hypothesis cannot hold. This is easily seen as

follows: Condition (67) holds for i = ±1 if and only if

p∞i =
β−i,0βi,−i − 2βi,0β−i,−i
4β−i,−iβi,i − β−i,iβi,−i

,

for i = ±1, that is, if and only if the limit prices (p∞−1, p
∞
1 ) are the Nash equilibrium prices (pN−1, p

N
1 ).

However, recall that (p∞−1, p
∞
1 ) = (pN−1, p

N
1 ) if and only if r∞i = 0 for i = ±1, which, if β−i,i 6= 0,

contradicts the previous necessary condition that r∞i = −β−i,i/(2β−i,−i). Thus, besides the trivial

case in which β−i,i = 0 for i = ±1, the Market Response Hypothesis does not hold for the reaction

function (62).

5 Concluding Remarks

The analysis in this paper serves to emphasize to both practitioners and researchers that it matters

whether sellers use models that do not explicitly incorporate competition and that it matters what

the sellers think they know and what they think they must estimate. Here, “it matters” means that

conclusions may vary widely depending on the assumptions one makes regarding these features.

There are settings in which sellers’ prices converge to a Nash equilibrium, but in general one should

not expect that prices that arise when sellers use such flawed models will be similar to prices that

arise when sellers employ models that explicitly account for competition, even though the sellers

using the flawed models generate parameter estimates that appear to them to be consistent with

their observed data.

Our study introduces the demand consistency property and evaluates its consequences. This

property requires that each seller’s estimated expected demand and actual expected demand coin-

cide when evaluated at a pair of limiting prices. At a limit, each seller also must perceive itself to be

choosing the best price based on its estimated expected demand function. The demand consistency

property makes precise the notion that sellers’ estimates should be calibrated to their observed data

and that competition affects those estimates. However, as we have seen, this apparently reasonable

notion of calibration by no means ensures that the sellers end up at the Nash equilibrium, which

is typically given as the predicted outcome of competition. Moreover, convergence of prices and

estimates — even when taken together with the demand consistency property — does not mean

there is convergence to the Nash equilibrium.
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Our results lead to the conclusion that care must be taken with the Market Response Hypoth-

esis that monopoly models will capture competitive effects if the models are calibrated with data

collected under competition. In some settings the monopoly models capture competitive effects in

a limited way, and in other settings not at all.

Our results also indicate that in many cases, the sellers are better off if they use models that

do not explicitly incorporate competition than they would be if they knew the expected demand

as a function of prices and ended up at the Nash equilibrium. Thus, although our results do not

support the Market Response Hypothesis, the results do not imply that sellers are better off using

models that explicitly incorporate competition.

This paper perhaps raises as many questions as it answers. For instance, one may wonder if

is it possible to identify general conditions for problems involving pricing competition, parameter

estimation, and model misspecification under which there is convergence to prices that are Pareto

superior to (or Pareto inferior to, or equal to) the Nash Equilibrium. A related topic for future

inquiry is the extent to which sellers should attempt to improve their models. At first, this question

may seem nonsensical because it would seem that “more accurate” models are better. However, as

we have seen, sellers may unwittingly end up at prices that are better for them than is the Nash

equilibrium. The results of this paper indicate that one must be careful when addressing this issue,

and the answer will depend on the level of modeling and estimation sophistication of the sellers, as

well as what the sellers think they know about each other’s modeling and estimation efforts.
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Appendix
Learning and Pricing with Models that Do Not Explicitly Incorporate Competition

William L. Cooper Tito Homem-de-Mello Anton J. Kleywegt

Proposition A–1. Suppose that F : Rd → R
d is a contraction mapping such that ‖F (x)− F (y)‖ ≤

λ ‖x− y‖ where λ ∈ [0, 1). Consider a closed convex set A ⊆ R
d and let π denote projection onto

A; i.e., π(x) = argmin{‖x− y‖ : y ∈ A}. Let x∗ = (x∗1, . . . , x
∗
d) denote the unique fixed point of

F and suppose x∗ ∈ A. Consider stochastic processes {Xk = (Xk
1 , . . . ,X

k
d ) : k = 0, 1, 2, . . . } and

ǫk = {(ǫk1 , . . . , ǫkd) : k = 1, 2, . . . } such that

Xk = π
((

1− k−1
)
Xk−1 + k−1

(
F (Xk−1) + ǫk

))
k = 1, 2, . . . (A–1)

Let Fk denote the σ-algebra generated by X0, ǫ
1, . . . , ǫk, and suppose E[ǫki |Fk−1] = 0 and E[(ǫki )

2|Fk−1] <

M for i = 1, . . . , d for some constant M <∞ . Then Xk → x∗ w.p.1.

Proof. For x ∈ R
d, we will use the notation Fi(x) to denote the i-th component of F (x).

Let Zk :=
∥∥Xk − x∗

∥∥2 =
∑d

i=1(X
k
i − x∗i )

2. Then

Zk =
∥∥∥π
((

1− k−1
)
Xk−1 + k−1

(
F (Xk−1) + ǫk

))
− x∗

∥∥∥
2

≤
∥∥∥
(
1− k−1

)
Xk−1 + k−1

(
F (Xk−1) + ǫk

)
− x∗

∥∥∥
2

(A–2)

=

d∑

i=1

[(
1− k−1

)
Xk−1

i + k−1
(
Fi(X

k−1) + ǫki

)
− x∗i

]2

=

d∑

i=1

[(
1− k−1

) (
Xk−1

i − x∗i

)
+ k−1

(
Fi(X

k−1)− x∗i + ǫki

)]2
(A–3)

where (A–2) holds because x∗ is an element of closed convex set A and π is projection onto A.

Let T k
i denote the i-th term in the sum (A–3). We have

T k
i =

(
1− k−1

)2
(Xk

i − x∗i )
2 + 2(1− k−1)k−1(Xk−1

i − x∗i )(Fi(X
k−1)− x∗i )

+ 2(1− k−1)k−1(Xk−1
i − x∗i )ǫ

k
i + k−2(Fi(X

k−1)− x∗i )
2

+ 2k−2(Fi(X
k−1)− x∗i )ǫ

k
i + k−2(ǫki )

2

Taking conditional expectations, we obtain

E[T k
i |Fk−1] ≤(1− k−1)2(Xk

i − x∗i )
2 + 2(1− k−1)k−1(Xk−1

i − x∗i )(Fi(X
k−1)− x∗i )

+ k−2(Fi(X
k−1)− x∗i )

2 + k−2M
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Hence by (A–3), we have

E[Zk|Fk−1] ≤(1− k−1)2Zk−1 + 2(1 − k−1)k−1
d∑

i=1

(Xk−1
i − x∗i )(Fi(X

k−1)− Fi(x
∗))

+ k−2
d∑

i=1

(Fi(X
k−1)− x∗i )

2 + k−2dM .

Next, observe that

d∑

i=1

(Xk−1
i −x∗i )(Fi(X

k−1)−Fi(x
∗)) ≤

∥∥∥Xk−1 − x∗
∥∥∥·
∥∥∥F (Xk−1)− F (x∗)

∥∥∥ ≤ λ
∥∥∥Xk−1 − x∗

∥∥∥
2
= λZk−1

where the first inequality follows from the Cauchy-Schwarz inequality and the second from the fact

that F is a contraction. In addition

d∑

i=1

(Fi(X
k−1)− x∗i )

2 =

d∑

i=1

(Fi(X
k−1)− Fi(x

∗))2 =
∥∥∥F (Xk−1)− F (x∗)

∥∥∥
2
≤ λ2

∥∥∥Xk−1 − x∗
∥∥∥
2
= λ2Zk−1

where the first equality holds because x∗ is the fixed point of F .

So,

E[Zk|Fk−1] ≤(1− k−1)2Zk−1 + 2(1− k−1)k−1λZk−1 + k−2λ2Zk−1 + k−2dM .

Rearranging, we obtain

E[Zk|Fk−1] ≤
{
1− 2k−1 + k−2 + 2k−1λ− 2k−2λ+ k−2λ2

}
Zk−1 + k−2dM

≤
{
1− 2k−1(1− λ) + k−2(1 + λ2)

}
Zk−1 + k−2dM

= (1 +Bk−1)Zk−1 + Ck−1 −Dk−1

where

Bk−1 := k−2(1 + λ2) Ck−1 := k−2dM Dk−1 := 2k−1(1− λ)Zk−1

The sequences {Bk}, {Ck}, {Dk}, and {Zk} are non-negative and
∑

k B
k <∞ and

∑
k C

k <∞
w.p.1. Hence, we conclude that from Lemma A–3 below that there exists finite random variable Z

such that Zk → Z and
∑

k Dk <∞ w.p.1.

We will now argue that Z = 0 w.p.1, from which it follows that Xk → x∗ w.p.1. Suppose for a

contradiction that there exists a set of strictly positive probability upon which Z > 0. Then, on that

set, we have
∑

k k
−1Zk =∞, from which it follows that

∑
k D

k =∞. Hence, P (
∑

k Dk =∞) > 0,

which is a contraction. �
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Lemma A–1. Suppose βi,−i > 0 for i = ±1 and consider the demand functions

di(pi, p−i) = βi,0 + βi,ipi + βi,−ip−i i = ±1. (A–4)

Let θ =
√

β−1,1β1,−1/(β−1,−1β1,1) and ν =
√

β−1,−1β1,−1/(β−1,1β1,1), and consider also the demand

functions

d̃i(p̃i, p̃−i) = β̃i,0 + β̃i,ip̃i + β̃i,−ip̃−i i = ±1 (A–5)

where β̃i,0 = βi,0 and β̃i,−i = −θβ̃i,i for i = ±1, β̃−1,−1 = β−1,−1, and β̃1,1 = νβ1,1.

The demand functions (A–4) and (A–5) are equivalent in the sense that d̃i(p̃i, p̃−i) = di(pi, p−i)

for i = ±1 if p̃−1 = p−1 and p̃1 = p1/ν. Moreover, the Nash equilibrium prices (p̃N−1, p̃
N
1 ) and

modeling error equilibrium prices (p̃∞−1, p̃
∞
1 ) for demand functions (A–5) satisfy

p̃N−1 = pN−1 p̃N1 = pN1 /ν p̃∞−1 = p∞−1 p̃∞1 = p∞1 /ν (A–6)

where (pN−1, p
N
1 ) and (p∞−1, p

∞
1 ) are, respectively, the Nash equilibrium and modeling error equilibrium

prices for demand functions (A–4).

Proof. The equivalence of (A–4) and (A–5) can be verified using simple algebra. Likewise, the

relations (A–6) follow after some algebra from (6) and (22). �

Proof of Proposition 2. It follows from (6) that

pNi =
−θβ−i,0βi,i − 2βi,0β−i,−i

(4− θ2)β−i,−iβi,i

and thus

di(p
N
i , p

N
−i) =

θβ−i,0βi,i + 2βi,0β−i,−i
(4− θ2)β−i,−i

and

gi(p
N
i , p

N
−i) = −(θβ−i,0βi,i + 2βi,0β−i,−i)

2

(4− θ2)2β2
−i,−iβi,i

.

Similarly, it follows from (22) that

p∞i =
−θβ−i,0βi,i − βi,0β−i,−i

2(1− θ2)β−i,−iβi,i

and thus

di(p
∞
i , p∞−i) =

βi,0
2

and

gi(p
∞
i , p∞−i) = −

θβ−i,0βi,0βi,i + β2
i,0β−i,−i

4(1− θ2)β−i,−iβi,i
.
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Note that

(β−1,−1,β1,1) ∈ Γ=
i

⇔ gi(p
N
i , p

N
−i) = gi(p

∞
i , p∞−i)

⇔ − (θβ−i,0βi,i + 2βi,0β−i,−i)
2

(4− θ2)2β2
−i,−iβi,i

= −
θβ−i,0βi,0βi,i + β2

i,0β−i,−i

4(1− θ2)β−i,−iβi,i

⇔
4(1− θ2)(θβ−i,0βi,i + 2βi,0β−i,−i)

2 − (4− θ2)2β−i,−i(θβ−i,0βi,0βi,i + β2
i,0β−i,−i)

4(1 − θ2)(4 − θ2)2β2
−i,−iβi,i

= 0

⇔ 4(1− θ2)(θβ−i,0βi,i + 2βi,0β−i,−i)
2 − (4− θ2)2β−i,−i(θβ−i,0βi,0βi,i + β2

i,0β−i,−i) = 0

⇔ θ2
[
4(1− θ2)β2

−i,0︸ ︷︷ ︸
=: a

β2
i,i + (−(8 + θ2)θβ−i,0βi,0β−i,−i)︸ ︷︷ ︸

=: b

βi,i + (−(8 + θ2)β2
i,0β

2
−i,−i)︸ ︷︷ ︸

=: c

]
= 0

⇔ θ = 0 or

βi,i =
−b±

√
b2 − 4ac

2a
=

βi,0
β−i,0

[
(8 + θ2)θ ± (4− θ2)

√
8 + θ2

8(1 − θ2)

]
β−i,−i

Thus, for any (β−1,0, β1,0, θ) ∈ (0,∞)2×(0, 1), the set of (β−1,−1, β1,1)-points such that gi(p
N
i , p

N
−i) =

gi(p
∞
i , p∞−i) is given by two lines through the origin. Note that (8+ θ2)θ+(4− θ2)

√
8 + θ2 > 0, and

thus one of the lines has a positive slope, and

θ ∈ (0, 1) ⇒
√

8 + θ2θ + θ2 < 4

⇒ (8 + θ2)θ − (4− θ2)
√

8 + θ2 < 0

and thus the other line has a negative slope. Thus the set of (β−1,−1, β1,1)-points in S such that

g1(p
N
1 , p

N
−1) = g1(p

∞
1 , p∞−1) is given by one line through the origin β1,1 = (β1,0/β−1,0)T (θ)β−1,−1,

where T (θ) := [(8 + θ2)θ + (4 − θ2)
√
8 + θ2]/[8(1 − θ2)]. Similarly, the set of (β−1,−1, β1,1)-points

in S such that g−1(p
N
−1, p

N
1 ) = g−1(p

∞
−1, p

∞
1 ) is given by one line through the origin β−1,−1 =

(β−1,0/β1,0)T (θ)β1,1, that is, β1,1 = (β1,0/β−1,0)[1/T (θ)]β−1,−1. Note that T (θ) ≥
√
8 + θ2/[2(1 −

θ2)] >
√
2 > 1 on (0, 1). Next we verify that gi(p

N
i , p

N
−i) < gi(p

∞
i , p∞−i) if βi,i > (βi,0/β−i,0)T (θ)β−i,−i.

Specifically, consider any point (β−1,−1, β1,1) such that βi,i = (βi,0/β−i,0)β−i,−i. Note that βi,i >

(βi,0/β−i,0)T (θ)β−i,−i since T (θ) > 1 and β−i,−i < 0.
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Note that at such a point,

gi(p
N
i ,p

N
−i) < gi(p

∞
i , p∞−i)

⇔ − (θβi,0β−i,−i + 2βi,0β−i,−i)
2

(4− θ2)2β2
−i,−iβi,i

< −
θβ2

i,0β−i,−i + β2
i,0β−i,−i

4(1 − θ2)β−i,−iβi,i

⇔ (θ + 2)2

(4− θ2)2
<

θ + 1

4(1 − θ2)

⇔ 1

(2− θ)2
<

1

4(1− θ)

⇔ 4− 4θ < 4− 4θ + θ2 .

Thus, taking into account that T (θ) > 1 and β−i,−i < 0, it follows that

Γ∗ =

{
β ∈ S : βi,i ≥

βi,0
β−i,0

T (θ)β−i,−i, i = ±1
}

=

{
β ∈ S :

β1,0
β−1,0

T (θ)β−1,−1 ≤ β1,1 ≤
β1,0
β−1,0

1

T (θ)
β−1,−1

}
6= ∅

Γ∗i =

{
β ∈ S : βi,i ≥

βi,0
β−i,0

T (θ)β−i,−i, β−i,−i ≤
β−i,0
βi,0

T (θ)βi,i

}

=

{
β ∈ S : βi,i ≥ max

{
βi,0
β−i,0

T (θ)β−i,−i,
βi,0
β−i,0

1

T (θ)
β−i,−i

}}

=

{
β ∈ S : βi,i ≥

βi,0
β−i,0

1

T (θ)
β−i,−i

}
6= ∅

ΓN =

{
β ∈ S : βi,i ≤

βi,0
β−i,0

T (θ)β−i,−i, i = ±1
}

=

{
β ∈ S :

βi,0
β−i,0

1

T (θ)
β−i,−i ≤ βi,i ≤

βi,0
β−i,0

T (θ)β−i,−i

}
= ∅ .

�

Proof of Lemma 1. We use Figure A–1 to illustrate the cases in the proof, and without loss of

generality, we assume that b−1 ≤ b1.

Suppose first that (37) holds. If x ≤ −b := (−b−1,−b1), that is, x ∈ R1, then
∥∥Π(x)− β̄∗

∥∥
Q
=

∥∥x− β̄∗
∥∥
Q
. If x−1 ≤ −b1 and x1 ≥ −b1, that is, x ∈ R2, then Π(x) = (x−1,−b1). Therefore, Π(x)

is no further in Euclidean distance than x from both β̄∗ and D [that is,
∥∥Π(x)− β̄∗

∥∥ ≤
∥∥x− β̄∗

∥∥

and d(Π(x)) ≤ d(x)], and hence
∥∥Π(x)− β̄∗

∥∥
Q
≤
∥∥x− β̄∗

∥∥
Q
by (36). Similarly, if x−1 ≥ −b−1 and

x1 ≤ −b1, that is, x ∈ R3, then Π(x) = (−b−1, x1), and
∥∥Π(x)− β̄∗

∥∥
Q
≤
∥∥x− β̄∗

∥∥
Q
.

In the remainder of the proof we consider x ≥ (−b1,−b1), that is, x ∈ R4 ∪ R5 ∪ R6. If

x ≥ (−b−1,−b−1), that is, x ∈ R4, then (−b−1,−b−1) is no further in Euclidean distance than x

from both β̄∗ and D, and hence
∥∥(−b−1,−b−1)− β̄∗

∥∥
Q
≤
∥∥x− β̄∗

∥∥
Q
. Also, Π(x) = Π(−b−1,−b−1),
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β̄∗

(−b−1,−b1)
(−b1,−b1)

(0, 0)

(−b−1,−b−1)

R2 R6 R4

R5

R3R1

← x−1 →

↑
x1
↓

x

(−b−1, y1)

Figure A–1: Regions for x to show that
∥∥Π(x)− β̄∗

∥∥
Q
≤
∥∥x− β̄∗

∥∥
Q

so
∥∥Π(x)− β̄∗

∥∥
Q
=
∥∥Π(−b−1,−b−1)− β̄∗

∥∥
Q
. Therefore, (38) will hold for x ∈ R4 if (38) holds for

(−b−1,−b−1).
If x−1 ≥ −b−1 and −b1 ≤ x1 < −b−1, that is, x ∈ R5, then (−b−1, x1) is no further in

Euclidean distance than x from both β̄∗ and D. Thus,
∥∥(−b−1, x1)− β̄∗

∥∥
Q
≤
∥∥x− β̄∗

∥∥
Q
. Also,

Π(x) = Π(−b−1, x1), so
∥∥Π(x)− β̄∗

∥∥
Q

=
∥∥Π(−b−1, x1)− β̄∗

∥∥
Q
. Hence, (38) will hold for x ∈ R5

if (38) holds for (−b−1, x1).
Therefore, to show that (38) holds for all x ∈ R4 ∪ R5 ∪ R6, it is sufficient to show that (38)

holds for all points in R6 := {x ∈ R
2 : −b1 < x−1 ≤ −b−1 and x1 ≥ −b1}. We begin by showing

that
∥∥−b− β̄∗

∥∥2
Q
≤

∥∥(−b−1, y1)− β̄∗
∥∥2
Q

(A–7)

for all y1 ≥ −b1. If y1 = −b1 then (A–7) holds with equality. Suppose that y1 > −b1. It follows
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from (36) that

∥∥−b− β̄∗
∥∥2
Q
≤

∥∥(−b−1, y1)− β̄∗
∥∥2
Q

⇐⇒ (1− q)
∥∥−b− β̄∗

∥∥2 + q(b1 − b−1)
2 ≤ (1− q)

∥∥(−b−1, y1)− β̄∗
∥∥2 + q(y1 + b−1)

2

⇐⇒ (1− q)
[
(−b−1 − β∗)2 + (−b1 − β∗)2

]
+ q(b1 − b−1)

2

≤ (1− q)
[
(−b−1 − β∗)2 + (y1 − β∗)2

]
+ q(y1 + b−1)

2

⇐⇒ (1− q)
[
b21 + 2b1β

∗
]
+ q

[
b21 − 2b−1b1

]
≤ (1− q)

[
y21 − 2y1β

∗
]
+ q

[
y21 + 2b−1y1

]

⇐⇒ b21 − b1 [−2(1− q)β∗ + 2qb−1] ≤ y21 + y1 [−2(1− q)β∗ + 2qb−1]

⇐⇒ (y1 + b1) [(y1 − b1)− 2(1 − q)β∗ + 2qb−1] ≥ 0.

Since y1 + b1 > 0, the final inequality above holds if and only if (y1 − b1)− 2(1− q)β∗ +2qb−1 ≥ 0,

i.e., if and only if 2q(β∗ + b−1) ≥ b1 − y1 + 2β∗. We are assuming that β∗ ≤ −bi, i = ±1, so it

follows that the inequalities above hold if and only if

q ≤ b1 − y1 + 2β∗

2(β∗ + b−1)
. (A–8)

A sufficient condition for (A–8) to hold is that

q ≤ inf
y1>−b1

b1 − y1 + 2β∗

2(β∗ + b−1)
=

2b1 + 2β∗

2(β∗ + b−1)
= 1 +

b1 − b−1
β∗ + b−1

, (A–9)

which holds by (37). Therefore, we have shown that (A–7) holds for all y1 ≥ −b1.
Consider any x ∈ R6 and note that x can be expressed as x = λ(−b−1, y1) + (1− λ)(−b1,−b1)

for some y1 ≥ −b1 and λ ∈ [0, 1]; see Figure A–1. Then

∥∥−b− β̄∗
∥∥2
Q
−
∥∥(−b−1, y1)− β̄∗

∥∥2
Q

= (1− q)(−b1 − β∗)2 + q(b1 − b−1)
2 − (1− q)(y1 − β∗)2 − q(y1 + b−1)

2. (A–10)
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Observe also that Π(x) = λ(−b−1,−b1) + (1− λ)(−b1,−b1). Therefore,

∥∥Π(x)− β̄∗
∥∥2
Q
−
∥∥x− β̄∗

∥∥2
Q

= (1− q)
(
[λ(−b−1) + (1− λ)(−b1)− β∗]2 + [−b1 − β∗]2

)
+ qλ2(b1 − b−1)

2

− (1− q)
(
[λ(−b−1) + (1− λ)(−b1)− β∗]2 + [λ(y1) + (1− λ)(−b1)− β∗]2

)
− qλ2(y1 + b−1)

2

= (1− q)[λ(−b1) + (1− λ)(−b1)− β∗]2 + qλ2(b1 − b−1)
2

− (1− q)[λ(y1) + (1− λ)(−b1)− β∗]2 − qλ2(y1 + b−1)
2

= (1− q)λ2(−b1 − β∗)2 + qλ2(b1 − b−1)
2 − (1− q)λ2(y1 − β∗)2 − qλ2(y1 + b−1)

2

+ (1− q)[(1− λ)2(−b1 − β∗)2 + 2λ(1 − λ)(−b1 − β∗)2]

− (1− q)[(1− λ)2(−b1 − β∗)2 + 2λ(1 − λ)(y1 − β∗)(−b1 − β∗)]

= λ2
(∥∥−b− β̄∗

∥∥2
Q
−
∥∥(−b−1, y1)− β̄∗

∥∥2
Q

)
+ 2(1 − q)λ(1− λ)(−b1 − β∗)(−b1 − y1)

≤ 2(1− q)λ(1 − λ)(−b1 − β∗)(−b1 − y1) ,

where the final equality follows from (A–10) and the inequality follows from (A–7). Hence,
∥∥Π(x)− β̄∗

∥∥2
Q
≤
∥∥x− β̄∗

∥∥2
Q

if (1− q)λ(1 − λ)(−b1 − β∗)(−b1 − y1) ≤ 0. The preceding inequality

does indeed hold because β∗ ≤ −b1 ≤ y1, λ ∈ [0, 1], and q < 1. This completes the proof in the

case that (37) holds.

Next, suppose that β∗ + bmin = 0. Then, since β∗ ≤ −bmax, it follows that β∗ = −b−1 = −b1.
Therefore, regions R5 and R6 are empty. For x ∈ R1 ∪ R2 ∪ R3, (38) holds by the arguments

above. For x ∈ R4, Π(x) = β̄∗ and (38) holds trivially. �

Proof of Lemma 2. Let r = x1/x−1. Note that

h(x)TQy =


 y−1 + βd(1/r − 1)

y1 + βd(r − 1)



T 
 1 −q
−q 1




 y−1

y1




= ‖y‖2Q + y−1
[
βd(1/r − 1)− qβd(r − 1)

]
+ y1

[
− qβd(1/r − 1) + βd(r − 1)

]

= ‖y‖2Q + βd(r − 1)
[
y1(1 + q/r)− y−1(q + 1/r)

]
. (A–11)
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Next, since r = x1/x−1 = (β∗−y1)/(β
∗−y−1), it follows that y−1 = y1/r+(1− 1/r) β∗ and hence,

βd(r − 1)
[
y1(1 + q/r)− y−1(q + 1/r)

]

= βd(r − 1)
[
y1(1 + q/r − q/r − 1/r2)− β∗(q + 1/r)(1 − 1/r)

]

=
βd(r − 1)

r2
[
y1(r

2 − 1)− β∗(rq + 1)(r − 1)
]

=
βd(r − 1)2

r2
[
y1(r + 1)− β∗(rq + 1)

]

=
βd(r − 1)2(r + 1)

r2

[
(y1 − β∗)− β∗(q − 1)

r

r + 1

]
. (A–12)

Observe that in (A–12) the first term βd(r − 1)2(r + 1)/r2 is nonnegative. The second term is

always positive, since y1 − β∗ = −x1 ≥ b1 and

β∗(q − 1)
r

r + 1
< β∗(q − 1) ≤ bmin.

It follows that βd(r − 1)
[
y1(1 + q/r) − y−1(q + 1/r)

]
≥ 0, and hence, it follows from (A–11) that

hTQy ≥ ‖y‖2Q. �

Lemma A–2. Suppose that E[εk+1
i |Fk] = 0, and there is a constant M such that E[(εk+1

i )2|Fk] ≤
M for each k and each i. Then, there are positive constants A and B such that, for each k and

each i,

E

[
(Hk+1)TQHk+1

∣∣∣ Fk
]
≤ A+B

∥∥∥β̄∗ − α̂k
∥∥∥
2

Q
. (A–13)

Proof. Note that

E

[
(Hk+1)TQHk+1

∣∣∣ Fk
]

= E

[
(Hk+1
−1 )2 + (Hk+1

1 )2 − 2qHk+1
−1 Hk+1

1

∣∣∣ Fk
]

= E



(
hk−1 − 2

α̂k
−1

β0
εk+1
−1

)2

+

(
hk1 − 2

α̂k
1

β0
εk+1
1

)2

− 2q

(
hk−1 − 2

α̂k
−1

β0
εk+1
−1

)(
hk1 − 2

α̂k
1

β0
εk+1
1

) ∣∣∣∣∣∣
Fk




=
(
hk−1

)2
+ 4

(
α̂k
−1

β0

)2

E

[(
εk+1
−1

)2 ∣∣∣∣ F
k

]
− 4hk−1

α̂k
−1

β0
E

[
εk+1
−1

∣∣∣ Fk
]

+
(
hk1

)2
+ 4

(
α̂k
1

β0

)2

E

[(
εk+1
1

)2 ∣∣∣∣ F
k

]
− 4hk1

α̂k
1

β0
E

[
εk+1
1

∣∣∣ Fk
]

− 2qhk−1h
k
1 − 8q

α̂k
−1

β0

α̂k
1

β0
E

[
εk+1
−1 εk+1

1

∣∣∣ Fk
]
+ 4qhk−1

α̂k
1

β0
E

[
εk+1
1

∣∣∣ Fk
]
+ 4qhk1

α̂k
−1

β0
E

[
εk+1
−1

∣∣∣ Fk
]

=
(
hk−1

)2
+ 4

(
α̂k
−1

β0

)2

E

[(
εk+1
−1

)2 ∣∣∣∣ F
k

]
+
(
hk1

)2
+ 4

(
α̂k
1

β0

)2

E

[(
εk+1
1

)2 ∣∣∣∣ F
k

]

− 2qhk−1h
k
1 − 8q

α̂k
−1

β0

α̂k
1

β0
E

[
εk+1
−1 εk+1

1

∣∣∣ Fk
]
. (A–14)
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Also,

(
hk−1

)2
+
(
hk1

)2
− 2qhk−1h

k
1 =

∥∥∥hk
∥∥∥
2

Q

=

∥∥∥∥∥∥∥∥




(β∗ − α̂k
−1) + βd

(
α̂k
−1

α̂k
1

− 1

)

(β∗ − α̂k
1) + βd

(
α̂k
1

α̂k
−1

− 1

)




∥∥∥∥∥∥∥∥

2

Q

=

∥∥∥∥∥∥∥




(
1− βd

α̂k
1

) (
β∗ − α̂k

−1

)
(
1− βd

α̂k
−1

)(
β∗ − α̂k

1

)


+ βd




β∗

α̂k
1

− 1

β∗

α̂k
−1

− 1




∥∥∥∥∥∥∥

2

Q

≤ 2

∥∥∥∥∥∥∥




(
1− βd

α̂k
1

) (
β∗ − α̂k

−1

)
(
1− βd

α̂k
−1

)(
β∗ − α̂k

1

)




∥∥∥∥∥∥∥

2

Q

+ 2β2
d

∥∥∥∥∥∥∥




β∗

α̂k
1

− 1

β∗

α̂k
−1

− 1




∥∥∥∥∥∥∥

2

Q

(A–15)

where the inequality holds because ‖x+ y‖2Q ≤ 2 ‖x‖2Q + 2 ‖y‖2Q (which is a consequence of the

equality ‖x+ y‖2Q + ‖x− y‖2Q = 2 ‖x‖2Q + 2 ‖y‖2Q).
Next, we show that there is a finite constant C such that

∥∥∥∥∥∥∥




(
1− βd

α̂k
1

) (
β∗ − α̂k

−1

)
(
1− βd

α̂k
−1

)(
β∗ − α̂k

1

)




∥∥∥∥∥∥∥

2

Q

≤ C2
∥∥∥β̄∗ − α̂k

∥∥∥
2

Q
. (A–16)

Recall that βd ≥ 0 and α̂k
i ≤ −bi < 0, and thus 1 ≤ 1 − βd/α̂

k
i ≤ 1 + βd/bi. Therefore, to

show (A–16), it suffices to find C such that

∥∥∥∥∥∥


 a−1x−1

a1x1



∥∥∥∥∥∥

2

Q

≤ C2 ‖x‖2Q (A–17)

for all x ∈ R
2 and all a = (a−1, a1) ∈ S := [1, 1 + βd/b1]× [1, 1 + βd/b−1]. To this end, consider the

function

f(a) :=

∥∥∥∥∥∥


 a−1x−1

a1x1



∥∥∥∥∥∥

2

Q

= a2−1x
2
−1 + a21x

2
1 − 2qa−1a1x−1x1

Note that

∇2f(a) =


 2x2−1 −2qx−1x1
−2qx−1x1 2x21


 .

Since 2x2−1 ≥ 0, 2x21 ≥ 0, and
∣∣∇2f(a)

∣∣ = 4(1 − q2)x2−1x
2
1 ≥ 0, it follows that ∇2f(a) is positive

semidefinite for all a, and thus f is convex. Hence f attains its maximum over S at an extreme
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point of S. Therefore, if (A–17) holds for all x ∈ R
2 and all extreme points of S, then (A–17) holds

for all x ∈ R
2 and all a ∈ S.

Note that

lim
C→∞

√
C2 − a2−1

√
C2 − a21

C2 − a−1a1
= 1

Recall that 0 ≤ q < 1. Choose C > max{1 + βd/b1, 1 + βd/b−1} such that

q ≤

√
C2 − a2−1

√
C2 − a21

C2 − a−1a1

for all a in the set of four extreme points of S.
Consider x ∈ R

2 and an extreme point a of S. If x−1x1 > 0 then

C2 ‖x‖2Q −

∥∥∥∥∥∥


 a−1x−1

a1x1



∥∥∥∥∥∥

2

Q

= (C2 − a2−1)x
2
−1 + (C2 − a21)x

2
1 − 2q(C2 − a−1a1)x−1x1

= (C2 − a2−1)x
2
−1 + (C2 − a21)x

2
1 − 2

√
C2 − a2−1

√
C2 − a21x−1x1

+ 2


1− q

C2 − a−1a1√
C2 − a2−1

√
C2 − a21



√

C2 − a2−1

√
C2 − a21x−1x1

=

(√
C2 − a2−1x−1 −

√
C2 − a21x1

)2

+ 2


1− q

C2 − a−1a1√
C2 − a2−1

√
C2 − a21



√
C2 − a2−1

√
C2 − a21x−1x1

≥ 0

If x−1x1 ≤ 0, that is, qx−1x1 ≤ 0, then

∥∥∥∥∥∥


 a−1x−1

a1x1



∥∥∥∥∥∥

2

Q

= a2−1x
2
−1 + a21x

2
1 − 2qa−1a1x−1x1

≤ (1 + βd/b1)
2x2−1 + (1 + βd/b−1)

2x21 − 2q(1 + βd/b1)(1 + βd/b−1)x−1x1

≤ C2x2−1 + C2x21 − 2qC2x−1x1

= C2 ‖x‖2Q

Thus, (A–17) holds for all x ∈ R and all extreme points of S. Hence, (A–16) holds.
Next, we show that there is a constant K such that

∥∥∥∥∥∥∥




β∗

α̂k
1

− 1

β∗

α̂k
−1

− 1




∥∥∥∥∥∥∥

2

Q

≤ K . (A–18)
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Recall that β∗ < 0 and α̂k
i ≤ −bi < 0, and thus −1 < β∗/α̂k

i − 1 ≤ −β∗/bi − 1. As before, the

function g(a) := ‖a‖2Q is convex, and thus attains its maximum at an extreme point of [−1,−β∗/b1−
1]× [−1,−β∗/b−1 − 1]. Consequently, (A–18) holds with

K := max
{
g(a) : a ∈ [−1,−β∗/b1 − 1]× [−1,−β∗/b−1 − 1]

}
.

Therefore, it follows from (A–15), (A–16), and (A–18) that

(
hk−1

)2
+
(
hk1

)2
− 2qhk−1h

k
1 ≤ 2C2

∥∥∥β̄∗ − α̂k
∥∥∥
2

Q
+ 2β2

dK . (A–19)

Next, observe that qα̂k
−1α̂

k
1 ≥ 0, and εk+1

−1 εk+1
1 ≥ −[(εk+1

−1 )2 + (εk+1
1 )2]/2, and thus

−qα̂k
−1α̂

k
1E

[
εk+1
−1 εk+1

1

∣∣∣ Fk
]
≤ qα̂k

−1α̂
k
1E

[
(εk+1
−1 )2 + (εk+1

1 )2]/2
∣∣∣ Fk

]
≤ qα̂k

−1α̂
k
1M .

Hence,

4

(
α̂k
−1

β0

)2

E

[(
εk+1
−1

)2 ∣∣∣∣ F
k

]
+ 4

(
α̂k
1

β0

)2

E

[(
εk+1
1

)2 ∣∣∣∣ F
k

]
− 8q

α̂k
−1

β0

α̂k
1

β0
E

[
εk+1
−1 εk+1

1

∣∣∣ Fk
]

≤ 4

β2
0

M

[(
α̂k
−1

)2
+
(
α̂k
1

)2
+ 2qα̂k

−1α̂
k
1

]
. (A–20)

Next we show how to choose C̃ > 1 so that

C̃2 ‖x‖2Q ≥ x2−1 + x21 + 2qx−1x1 (A–21)

for all x ∈ R
2
−. Note that

lim
C̃→∞

C̃2 − 1

C̃2 + 1
= 1

Recall that 0 ≤ q < 1. Choose C̃ > 1 such that

q ≤ C̃2 − 1

C̃2 + 1

Then

C̃2 ‖x‖2Q −
[
x2−1 + x21 + 2qx−1x1

]

= (C̃2 − 1)x2−1 + (C̃2 − 1)x21 − 2q(C̃2 + 1)x−1x1

= (C̃2 − 1)x2−1 + (C̃2 − 1)x21 − 2
√

C̃2 − 1
√

C̃2 − 1x−1x1

+ 2

(
1− q

C̃2 + 1

C̃2 − 1

)√
C̃2 − 1

√
C̃2 − 1x−1x1

=
(√

C̃2 − 1x−1 −
√

C̃2 − 1x1

)2
+ 2

(
1− q

C̃2 + 1

C̃2 − 1

)√
C̃2 − 1

√
C̃2 − 1x−1x1 ≥ 0 .
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Thus, it follows from (A–20) and (A–21) that

4

(
α̂k
−1

β0

)2

E

[(
εk+1
−1

)2 ∣∣∣∣ F
k

]
+ 4

(
α̂k
1

β0

)2

E

[(
εk+1
1

)2 ∣∣∣∣ F
k

]
− 8q

α̂k
−1

β0

α̂k
1

β0
E

[
εk+1
−1 εk+1

1

∣∣∣ Fk
]

≤ 4

β2
0

MC̃2
∥∥∥α̂k

∥∥∥
2

S

=
4MC̃2

β2
0

∥∥∥α̂k − β̄∗ + β̄∗
∥∥∥
2

Q

≤ 8MC̃2

β2
0

∥∥∥α̂k − β̄∗
∥∥∥
2

Q
+

8MC̃2

β2
0

∥∥β̄∗
∥∥2
Q
. (A–22)

The result follows from (A–14), (A–19), and (A–22) by choosing

A := 2β2
dK +

8MC̃2

β2
0

∥∥β̄∗
∥∥2
Q

> 0

B := 2C2 +
8MC̃2

β2
0

> 0.

�

We will use Lemma A–3, which was established by Robbins and Siegmund (1971).

Lemma A–3. Consider a sequence of finite, nonnegative random variables Bk, Ck,Dk, Zk, adapted

to the σ-field Fk, that satisfy

E

[
Zk+1 | Fk

]
≤ (1 +Bk)Zk + Ck −Dk.

Then, there is a finite random variable Z such that, on the set {∑k B
k <∞,

∑
k C

k <∞}, w.p.1,

lim
k→∞

Zk = Z and
∑

k

Dk < ∞.

Lemma A–4. If (55) holds, then the system (56) is nonsingular.

Proof. Recall (56):

βi,−ip
∗
−i + (βi,−ir

∗
i + 2βi,i)p

∗
i = −βi,0 , i = ±1.

Thus, the system (56) is nonsingular if and only if the determinant

∆ := 4β−1,−1 β1,1 + 2β−1,−1 β1,−1 r
∗
1 + 2β1,1 β−1,1 r

∗
−1 − β−1,1 β1,−1 (1− r∗−1 r

∗
1) 6= 0
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Next we show that if (55) holds, then ∆ > 0. Note that r∗−i ≤ −β−i,−i/β−i,i, β−i,i ≥ 0, and

β−i,−i < 0 imply that β−i,ir
∗
−i + 2β−i,−i < 0. Thus

∆ =
(
β−1,1r

∗
−1 + 2β−1,−1

)
β1,−1r

∗
1 + 2

(
β−1,1r

∗
−1 + 2β−1,−1

)
β1,1 − β−1,1β1,−1

≥ −
(
β−1,1r

∗
−1 + 2β−1,−1

)
β1,1 + 2

(
β−1,1r

∗
−1 + 2β−1,−1

)
β1,1 − β−1,1β1,−1

= β1,1β−1,1r
∗
−1 + 2β−1,−1β1,1 − β−1,1β1,−1

≥ −β−1,−1β1,1 + 2β−1,−1β1,1 − β−1,1β1,−1

= β−1,−1β1,1 − β−1,1β1,−1 > 0

where the first inequality follows from β−1,1r
∗
−1 + 2β−1,−1 < 0, β1,−1 ≥ 0, and (55); the second

inequality follows from β1,1 < 0, β−1,1 ≥ 0, and (55); and the third inequality follows from (3). �

Lemma A–5. pi(r−1, r1) > 0 for all (r−1, r1) ∈ R

Proof. Recall that

pi(r−1, r1) :=
−2βi,0 β−i,−i + β−i,0 βi,−i − βi,0 β−i,i r−i

4β−i,−i βi,i + 2β−i,−i βi,−i ri + 2βi,i β−i,i r−i − β−i,i βi,−i (1− r−i ri)
.

Note that the denominator on the right side is the determinant ∆, and it was shown above in the

proof of Lemma A–4 that if ri ≤ −βi,i/βi,−i for i = ±1, then ∆ > 0. Next, consider the numerator

on the right side:

−2βi,0 β−i,−i + β−i,0 βi,−i − βi,0 β−i,i r−i ≥ −2βi,0 β−i,−i + β−i,0 βi,−i + βi,0 β−i,−i

= −βi,0 β−i,−i + β−i,0 βi,−i > 0

where the first inequality follows because ri ≤ −βi,i/βi,−i for i = ±1 for (r−1, r1) ∈ R and the

second inequality follows from βi,0 > 0, βi,i < 0, and βi,−i ≥ 0 for i = ±1. �
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Proof of Lemma 3. Fix i = ±1. By writing rk+1
i as in (46) and using recursive expressions for

the averages, we obtain the following equivalences:

rki =
ppk+1 − pk+1

−i pk+1
i

p2
k+1
i −

(
pk+1
i

)2
(
= rk+1

i

)

⇔ ppk+1 − pk+1
−i pk+1

i = rki

[
p2

k+1

i −
(
pk+1
i

)2]

⇔ k

k + 1
ppk +

1

k + 1
pk−ip

k
i −

(
k

k + 1
pk−i +

1

k + 1
pk−i

)(
k

k + 1
pki +

1

k + 1
pki

)

= rki

[
k

k + 1
p2

k

i +
1

k + 1

(
pki

)2
−
(

k

k + 1
pki +

1

k + 1
pki

)2
]

⇔ k

k + 1

(
ppk − pk−ip

k
i

)
+

k

k + 1
pk−ip

k
i −

(
k

k + 1

)2

pk−ip
k
i +

1

k + 1
pk−ip

k
i −

(
1

k + 1

)2

pk−ip
k
i

− k

(k + 1)2
pk−ip

k
i −

k

(k + 1)2
pki p

k
−i

= rki

[
k

k + 1

(
p2

k
i −

(
pki

)2)
+

k

k + 1

(
pki

)2
−
(

k

k + 1

)2 (
pki

)2
+

1

k + 1

(
pki

)2
−
(

1

k + 1

)2 (
pki

)2

− 2k

(k + 1)2
pki p

k
i

]

⇔ k

(k + 1)2
pk−ip

k
i +

k

(k + 1)2
pk−ip

k
i −

k

(k + 1)2

(
pk−ip

k
i + pki p

k
−i

)
+

k

k + 1
rki

(
p2

k
i −

(
pki

)2)

= rki

[
k

(k + 1)2

(
pki

)2
+

k

(k + 1)2

(
pki

)2
− 2k

(k + 1)2
pki p

k
i

]
+

k

k + 1
rki

(
p2

k

i −
(
pki

)2)

⇔
(
pk−i − pk−i

)(
pki − pki

)
= rki

(
pki − pki

)2
.

It follows that the ratio rki defined in (46) satisfies rk0+1
i = rk0i if and only if either (58) or (59)

holds. In that case, it follows from (47) that α̂k0+1
i = α̂k0

i .

Next we verify that α̂k0+1
i,0 = α̂k0

i,0 if (58) holds for both i = ±1 or if (59) holds. In either case,

rk0+1
i = rk0i by the above argument, and hence from (48) we have the following equivalences:

α̂k0+1
i,0 = α̂k0

i,0

⇔ pk0+1
−i − pk0+1

i rk0+1
i = pk0−i − pk0i rk0i

⇔
(

k0
k0 + 1

pk0−i +
1

k0 + 1
pk0−i

)
−
(

k0
k0 + 1

pk0i +
1

k0 + 1
pk0i

)
rk0i = pk0−i − pk0i rk0i

⇔ 1

k0 + 1

(
pk0−i − pk0−i

)
=

1

k0 + 1

(
pk0i − pk0i

)
rk0i

⇔ pk0−i − pk0−i = rk0i

(
pk0i − pk0i

)
. (A–23)

The statement (A–23) is true if (58) holds for both i = ±1 or if (59) holds.
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It follows from the above developments that if (58) holds for both i = ±1 or (59) holds for

both i = ±1, then rk0+1
i = rk0i , α̂k0+1

i = α̂k0
i , and α̂k0+1

i,0 = α̂k0
i,0 for both i = ±1. Consequently,

pk0+1
i = pk0i for both i = ±1 by (49). It follows that

pk0+1
i − pk0+1

i =
k0

k0 + 1
pk0i +

1

k0 + 1
pk0i − pk0i =

k0
k0 + 1

(
pk0i − pk0i

)
for i = ±1,

and thus (58) holds for both i = ±1 or (59) holds for both i = ±1 each with k0 + 1 in place of k0.

This implies rk0+2
i = rk0+1

i and pk0+2
i = pk0+1

i for i = ±1. Repeating the argument, it follows that

rk+1
i = rki and pk+1

i = pki for i = ±1 for all k ≥ k0 and therefore rki = rk0i and pki = pk0i for i = ±1
for all k ≥ k0; that is, the process is stationary at period k0.

Conversely, suppose the process is stationary at period k0. Then rk0+1
i = rk0i for i = ±1 and,

as seen above, it must hold that α̂k0+1
i = α̂k0

i for i = ±1. Together with the fact that pk0+1
i = pk0i

for i = ±1, this implies by (49) that α̂k0+1
i = α̂k0

i for i = ±1, and hence it follows from (A–23) that

pk0−i − pk0−i = rk0i

(
pk0i − pk0i

)
for i = ±1. This implies that either (58) holds for both i = ±1 or else

(59) holds for both i = ±1.
To show the second assertion of the lemma, consider the linear system

pk0−1 − pk0−1 = rk01

(
pk01 − pk01

)

pk01 − pk01 = rk0−1

(
pk0−1 − pk0−1

)
.

It is easy to see that the determinant of this system is 1 − rk01 rk0−1. It follows that if rk01 rk0−1 < 1,

then the system has a unique solution, given by pk0i = pk0i , i = ±1. �

Proof of Proposition 4. Consider (p∗−1, p
∗
1) ∈ P ′. By the definition of P ′, there exists a pair

(r∗−1, r
∗
1) ∈ R′ such that p∗i = pi(r

∗
−1, r

∗
1) for i = ±1. Suppose initially that 0 < r∗−1r

∗
1 < 1. In what

follows, the superscript 3 refers to k = 3, i.e. the values calculated from the three initial price pairs

p0, p1, p2.

To simplify the notation, define

w := pp3 s := p3−1 t := p31

u := p2
3

−1 v := p2
3

1

and

a := p0−1 c := p1−1 x := p2−1

b := p01 d := p11 y := p21.
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Then the following relations hold:

ab+ cd+ xy = 3w (A–24)

a+ c + x = 3s (A–25)

b+ d + y = 3t (A–26)

a2 + c2 + x2 = 3u (A–27)

b2 + d2 + y2 = 3v. (A–28)

Our goal is to determine initial points (i.e., a, b, c, d, x and y) such that the stationary condition

pki = pki holds for k = 3 and also r3i = r∗i , i = ±1 — which then will automatically imply that

pki = p∗i . It is easy to see from (49) that, if r3i = r∗i holds, then the condition p3i = p3i becomes

equivalent to imposing directly that p3i = p∗i , where p
∗
i is given by (57). That is, we want the initial

points a, b, c, d, x and y to satisfy

w − st

u− s2
= r∗−1 (A–29)

w − st

v − t2
= r∗1 (A–30)

s = p∗−1 (A–31)

t = p∗1, (A–32)

where w, s, t, u and v are functions of a, b, c, d, x and y (cf. (A–24)-(A–28)). Thus, the above system

has four equations and six unknowns, so there are two degrees of freedom. By fixing y = 0, we can

obtain a, b, c, d as a function of x as follows:

b =
3p∗1
2
± (x− p∗−1 + r∗1p

∗
1)

√
3r∗−1

4r∗1(1− r∗−1r
∗
1)

a = − 1

2

[
3 r∗−1 x

2 + 3 r∗−1 (p
∗
−1)

2 − 6 r∗−1 p
∗
−1 x+ 3 r∗1 (p

∗
1)

2

+ 6 r∗−1 r
∗
1 p
∗
1 p
∗
−1 − 6 p∗−1 b r

∗
−1 r

∗
1 − 2x b+ 6 p∗−1 b+ 2x b r∗−1 r

∗
1

+ 6x p∗1 − 12 p∗−1 p
∗
1

]
/
[
(−1 + r∗−1 r

∗
1) (2 b − 3 p∗1)

]

c = − 1

2

[
6 p∗−1 b− 6 p∗−1 p

∗
1 − 6 p∗−1 b r

∗
−1 r

∗
1 + 12 r∗−1 r

∗
1 p
∗
1 p
∗
−1

− 2x b+ 2x b r∗−1 r
∗
1 − 6 r∗−1 r

∗
1 p
∗
1 x− 3 r∗−1 x

2 − 3 r∗−1 (p
∗
−1)

2

+ 6 r∗−1 p
∗
−1 x− 3 r∗1 (p

∗
1)

2
]
/
[
(−1 + r∗−1 r

∗
1) (2 b − 3 p∗1)

]

d = 3 p∗1 − b.
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It remains to show that it is possible to choose x such that (i) the denominators of the expressions

for a and c above do not vanish, and (ii) the denominators of (A–29) and (A–30) do not vanish.

To show (i), notice that b is a linear function of x; hence, there is only one value of x for which

2b − 3p∗1 = 0. Since r∗−1r
∗
1 < 1, those denominators are non-zero for all but one value of x.

To show (ii), note that, as observed earlier, the denominator of (A–29) vanishes if and only if

p0−1 = p1−1 = p2−1 (and similarly for (A–30)). It follows from the above expressions for a and c that

c = a ⇔ either x = p∗−1 − p∗1r
∗
1 or x = p∗−1 − p∗1/r

∗
−1

so we can always choose x such that c 6= a, which guarantees that u− s2 > 0. Finally, by choosing

x such that 3p∗1 − b 6= 0, we have that d 6= 0 = y, which guarantees that v − t2 > 0.

Next, consider the case r∗1 = r∗−1 = 0. It is easy to see that the system (A–29)-(A–32) has three

equations and six unknowns (provided that the denominators in (A–29) and (A–30) are nonzero),

so there are three degrees of freedom. By fixing two of the variables to be zero (say, x and c), we

can find values for the remaining variables that ensure that u− s2 6= 0 and v − t2 6= 0. One such

set of values is

a = 3p∗−1

b = p∗1

d = 0

y = 2p∗1.

Finally, we consider the case r∗1r
∗
−1 = 1. We will use only two initial data points p0, p1, so

w, s, t, u and v are re-defined accordingly with 3 replaced by 2. Relations (A–24)-(A–28) become

ab+ cd = 2w (A–33)

a+ c = 2s (A–34)

b+ d = 2t (A–35)

a2 + c2 = 2u (A–36)

b2 + d2 = 2v. (A–37)

As before, we want to impose the conditions r2i = r∗i and p2i = p∗i , that is, (A–29)-(A–32).

However, in this case the system is much simpler, since it follows from (A–33)–(A–37) that

r∗−1 =
d− b

c− a
, r∗1 =

c− a

d− b
.
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The second equation is redundant, since by assumption r∗−1r
∗
1 = 1. Together with (A–31) and

(A–32), we then have three equations and four unknowns. By fixing b = 0 it follows that

a = p∗−1 − r∗1p
∗
1

c = p∗−1 + r∗1p
∗
1

d = 2p∗1.

We conclude by noticing that condition (61) ensures that α̂3
i < 0, cf. (47). Therefore, the same

values are repeated all k = 4, 5, . . ., so the system becomes stationary. �
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