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Abstract: In the hyperconnected logistics model, a city is represented as a continuous mesh of 

small regions called unit zones. The clustering problem is to partition the set of unit zones 

into larger local cells and urban areas, and is critical in defining network operations. We 

give a mixed integer programming-based method for solving the clustering problem, which 

combines aspects of graph partitioning and min-cost flow problems. Our model aims to 

minimize expected operating cost, accounting for s expenses throughout the network, while 

incentivizing clusters that are resilient, geographically compact, and have balanced demand. 

To generate meaningful warm-starts for our MIP and achieve computational speedups, we 

adapt a graph partitioning method called striping. Solutions for the clustering problem can 

be integrated with methods for other problems in hyperconnected network design, 

significantly improving their tractability. Our techniques work effectively in tandem with 

methods for choosing hub candidate locations and routing flow. We show the effectiveness of 

our methods in redesigning SF Express’s hyperconnected network in Shenzhen. 

Conference Topic(s): Interconnected freight transport, logistics and supply networks, Last 

mile, City logistics, PI Modelling and Simulation 

Keywords: Logistics clustering, urban logistics, hyperconnected city logistics, last mile, GIS, 

Physical Internet, logistics space time network, mixed-integer linear programming 

1 Introduction 
This paper proposes methods for designing a clustering of small atoms, called unit zones, into 

the larger pieces which serve as the backbone for hyperconnected intracity logistics, as 

proposed in the conceptual framework of (Montreuil et al., 2018). We work in a 

hyperconnected three-tier urban logistics model as depicted in Figure 1. A city is represented 

as a continuous mesh of unit zones (UZ), possibly of widely varying sizes, geography, 

population density, etc. Illustratively, an implementation in Shenzhen has unit zones covering 

in average about 5,000 inhabitants. These unit zones are served by access hubs (AH), where 

in the hyperconnected model each zone can be served by multiple nearby access hubs and 

each access hub can serve multiple unit zones, typically being positioned near their 

intersection. Unit zones are aggregated into disjoint larger spaces called local cells (LC), 

which in the USA could correspond to the size of a five-digit zip code. Similarly, each local 

cell is served by multiple larger processing centers called local hubs (LH), each of which can 

serve multiple local cells. Local cells are in turn aggregated into large spaces called urban 

areas (UA), served by gateway hubs (GH). We allow flow between any two hubs that are on 

the same level (horizontal flow) or one level apart (vertical flow). 

 

In the overall network design problem, there are three high-level questions we seek to answer: 

1. Where should hubs, of each type, be opened? 

2. How should the set of unit zones be partitioned into local cells? How should the set of 

local cells be partitioned into urban areas? 
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3. Given the hubs and clusters, how should flow be directed? 

 

Figure 1: A generic city showing the various levels of region and hub (Montreuil et al., 2018) showing 

the smallest regions called unit zones, which are clustered into local cells and urban areas. 

 

The clustering problem is to find a good solution to the second question. Such a solution is 

critical, as in the multi-tier web structure, it is very difficult to design operations without a 

shape structure. This structuring is analogous to the structuring of space in postal codes, 

which had been put in place to organize the postal flows yet have been frozen for decades 

notwithstanding the evolution of demographics and flow patterns, and are now mostly used 

for political, statistical, and location purposes. We generalize the structure in a wider logistics 

spectrum, and aim for the clusters to structure hyperconnected operations to evolve over time 

for optimized impact on logistics efficiency, capability, resiliency, and sustainability. 

 

When performing the clustering, all hub locations are fixed and we approximate flow cost. 

We employ a robust mixed integer program method, combining aspects of graph partitioning 

and min-cost flow problems, to obtain a clustering which is expected to have low cost of 

operation and environmental impact, while enabling fast pickup and delivery and being 

resilient to network disruptions. We foresee such clusterings being used on two levels: an 

individual company may use them for its own networks, or a clustering can be used for space 

structuring for multiple stakeholders in an urban setting, requiring more complex criteria. 

 

In Section 2, we discuss the assumptions and necessary data for our model. Next, in Section 3, 

we introduce our MIP approach for solving the clustering problem. We discuss its interaction 

with methods for other aspects of network redesign in Section 4, and give details of 

implementation in Section 5. Finally, in Section 6, we give an example of this clustering 

method in work with SF Express, applied to an urban area in northwest Shenzhen, China. 

2 Modeling 
In this section, we review the assumptions in modeling the city, its demand, and other input 

for the clustering model. We represent the city as a graph 𝐺 = (𝑉, 𝐸), where the vertex set 𝑉 

is the set of UZ and the edges 𝑒 ∈ 𝐸 represent pairs of adjacent UZ. Most of these adjacency 

pairs are determined by taking pairs of UZ whose boundaries nearly touch in a GIS map, but 

some additional edges may be added to connect more isolated parts of the city. We refer the 
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interested reader to Muthukrishnan et al. (2021) on hub candidate selection for additional 

details of this process. 

 

Unit zones are designed so each can be served by one or a small team of couriers. The size of 

unit zones can range dramatically to match the density of the urban landscape, from several 

blocks to a single skyscraper. Designing unit zones is outside the scope of the problems we 

consider here, but we want an efficient method to produce clusterings that can evolve through 

time as geography and demand changes require the unit zones to be redesigned. To estimate 

the operational costs of shipping, we have costs 𝜆𝑖𝑗 for each pair of unit zones, and 𝜆𝑖ℎ for 

each pair of unit zone and hub. These costs may be taken to be simply a straight-line distance, 

but much more sophisticated measures that make use of city and geographical data are also 

possible. For instance, this cost may reflect elevation changes, traffic patterns, nearby 

building type and density, geographical variance of the demand profiles, etc. The other crucial 

element of the clustering instance is the demand profile. We abstract a demand profile to a 

single number 𝜙𝑖𝑗 for each pair 𝑖, 𝑗 of unit zones, representing the demand for commodities 

from unit zone 𝑖 to unit zone 𝑗. The network structure design problem, which routes the flow 

more precisely than the clustering model, treats the multi-commodity aspect in more detail. 

 

Note that in the method for determining clustering, described in the mixed integer program in 

Section 3, we capture the cost of vertical flow between unit zones and local hubs and/or 

gateway hubs, but do not capture the cost of flow between unit zones and access hubs. 

Routing this flow, which is carried by the couriers in the hyperconnected framework, is an 

important aspect of the overall network design problem. Our model can easily be augmented 

to handle this flow as well, but at significant computational cost given the large number of 

access hubs in the network. However, the feasibility of any specific UZ-AH flow is not 

impacted by clustering. Moreover, while the optimal pattern of flow to and from AH for a 

given UZ might be affected by changing the clustering, any such changes are on a local level, 

not large and consistent effects throughout the network. Therefore, we approximate the design 

at the lowest level and consider only higher levels in the web, and assume that UZ-AH 

assignments are made given the clustering, as in Muthukrishnan et al. (2021). 

3 Mixed integer programming model 
We propose using a large mixed integer program to solve the clustering problem. This MIP, 

detailed below, simultaneously produces clusters of unit zones into local cells and local cells 

into urban areas. Its objective is to minimize operational costs, which we approximate as a 

weighted sum of flow costs between zones and hubs; expressions for the compactness and 

balance of the clustering, which affect the efficiency and resiliency of low-level operations 

not captured in the higher-level flow; and costs for expanding the size of hubs. Horizontal 

flow is allowed between zones in the same local cell and local cells in the same urban area. 

Demand is treated on a global level where flow transit to and from a gateway hub are 

independent processes. Therefore, this model abstracts away some aspects of flow cost, such 

as the cost of opening different numbers of arcs for flow and the process of flow being 

aggregated as it moves up the tree towards a gateway hub. Much of this behavior is captured 

in the network structure design model, whose results can be reincorporated into the clustering 

model as detailed in Section 5. 

 

3.1 Input and output 
As input, the model takes a variety of data about the geography of the region, the unit zone 

network, and the demand, including a list of 𝑛 unit zones indexed by 𝑖 and a list of hubs, 
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indexed by ℎ, with base capacities 𝜅ℎ and modules with capacities 𝜒ℎ𝑚 and prices 𝜋ℎ𝑚 

respectively. For each hub ℎ, the neighborhood 𝑁(ℎ) is a set of unit zones within adequate 

distance to be served by ℎ. 

 Unit zone-to-unit zone demand 𝜙𝑖𝑗 

 Unit zone-to-unit zone distances or costs 𝜆𝑖𝑗 

 Unit zone-to-hub distances or costs 𝜆𝑖ℎ 

Second, the model has a variety of parameters controlling aspects of the clustering and flow 

pattern, which can be set and tuned according to the problem instance: 

 Maximum number of local cells 𝐾 

 Maximum number of urban areas 𝐾′ 
 Parameters ℎ𝑢𝑏𝑠𝑚𝑖𝑛 (ℎ𝑢𝑏𝑠𝑚𝑖𝑛′) denoting the minimum number of LH needed to serve 

each LC, and GH needed per UA 

 Parameters 𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑚𝑖𝑛, 𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑚𝑎𝑥  denoting the minimum and maximum number of 

local cells permitted in an urban area 

 Parameters 𝜌𝐿𝐻, 𝜌𝐺𝐻 that limit the proportion of flow between any pair of unit zones 

𝑖 and 𝑗 that passes through a single local or gateway hub, respectively. Reducing these 

parameters creates a flow with increased resiliency to localized slowdowns. 

 Within-local-cell cost parameter 𝛾𝐿 and within-urban-area cost parameter 𝛾 𝐴, 

representing the relative cost of horizontal movement compared to vertical movement 

 Parameter δ controlling the proportion of the objective devoted to compactness 

 Hub capacity thresholds 𝑅𝑙, with associated penalties 𝜌𝑙 for exceeding them. 

As output, the model gives a list of local cells, indexed by 1 ≤  𝑘 ≤  𝐾; a list of urban areas, 

indexed by 1 ≤  𝑘′ ≤  𝐾; and a high-level approximate zone-to-hub and zone-to-zone flows. 

 
3.2 Decision variables and objective 

Throughout, we index UZ by 𝑖 and 𝑗, LC by 𝑘, and UA by 𝑘′. The key decision variables are 

binary assignment variables 𝑥𝑖𝑘
𝐶  and 𝑥𝑖𝑘

𝐴 ′. Each 𝑥𝑖𝑘
𝐶  is 1 if UZ 𝑖 is in LC 𝑘 and 0 otherwise. 

Likewise, 𝑥𝑖𝑘′
𝐴  is 1 if UZ 𝑖 is in UA 𝑘′ and 0 otherwise. Finally, 𝑐𝑘𝑘

′  is 1 if LC 𝑘 is contained 

in UA 𝑘′ and 0 otherwise. Binary 𝑒𝑖𝑗𝑘
𝐶  are 1 if UZ 𝑖 and 𝑗 are both in LC 𝑘 and 0 otherwise. 

Likewise 𝑒𝑖𝑗𝑘′
𝐴  is 1 if UZ 𝑖 and 𝑗 are both in UA 𝑘′ and 0 otherwise.  

 

Flow variables 𝑑𝑖𝑗ℎ
𝐴𝐻, 𝑑𝑖𝑗ℎ

𝐿𝐻 , 𝑑𝑖𝑗ℎ
𝐺𝐻 are the (nonnegative) quantity of flow from UZ 𝑖 to UZ 𝑗, 

passing through hub ℎ, where ℎ can be a local or gateway hub. Variables 𝑓𝑖𝑗
𝐶 and 𝑓𝑖𝑗

𝐴 are the 

(nonnegative) flow sent between UZ 𝑖 and 𝑗 at the LC level (through unspecified AH, not 

passing through any LH) and the UA level (through unspecified LH, not passing through any 

GH.) These capture vertical and horizontal flow, respectively, through the network. 

 

3.3 Objective 
The objective 𝑂𝐵𝐽 has five components: an estimate of the cost of vertical shipping 

operations, an estimate of the cost of horizontal shipping operations, a measure of the 

compactness of the local cells, a measure of the balance of the capacity used at each hub, and 

(optionally) the cost of opening modules for additional capacity at hubs. The other significant 

element of the cost of the network is opening and maintaining hubs, which is fixed in the 

input to the clustering model and which we discuss it in Section 4. 

 

Compactness refers to the shape of LCs: i.e., an LC with a circular shape is more compact 

than an LC with a more elongated shape. In the hyperconnected framework, operations within 
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LCs are carried out by riders, who have several fixed routes between UZs in the LCs. In more 

compact LC, there is a greater choice of efficient routes for riders, creating better resiliency 

and more flexible operations. Determining these routes is itself a complex problem which this 

clustering model does not attempt to solve. We quantify compactness (and hence a measure of 

the corresponding operation cost) by the total pairwise distance between UZs in each LC. 

 

Balance refers to the workload (i.e. capacity demands) on each hub. In operations, it is 

desirable to keep the workload of the hubs of each type (LH and GH) approximately equal, 

particularly for resiliency purposes. We quantify this by setting type-dependent thresholds 𝐵𝑙, 

with associated penalties 𝛽𝑙 for exceeding them. If a hub exceeds 𝐵𝑙 fraction of its capacity, 

cost 𝛽𝑙 is incurred. Therefore, we express the objective as 

 

𝑂𝐵𝐽 =  ∑ (𝜆𝑖ℎ + 𝜆𝑗ℎ)𝑑𝑖𝑗ℎ
𝐿𝐻

𝑖,𝑗,ℎ +   ∑ (𝜆𝑖ℎ + 𝜆𝑗ℎ)𝑑𝑖𝑗ℎ
𝐺𝐻

𝑖,𝑗,ℎ  +  ∑ (𝛾𝐶𝑓𝑖𝑗
𝐶 + 𝛾 𝐴𝑓𝑖𝑗

𝐴)𝑖,𝑗     (1) 

                            +  𝛿 ∑ 𝜆𝑖𝑗𝑒𝑖𝑗𝑘
𝐶

𝑖,𝑗,𝑘  +  ∑ 𝛽𝑙𝑙,ℎ 𝑏𝑙ℎ + ∑ 𝜋ℎ𝑚𝑧ℎ𝑚ℎ,𝑚  ,  

 

where the first line of the objective approximates the cost of vertical and horizontal flow, and 

the second includes a measure of compactness of the local cells, a measure of the balance of 

the hubs, and the cost of capacity modules added to the hubs. 

 

3.4 Constraints: 
We formulate the problem as a mixed integer program, minimizing the objective 𝑂𝐵𝐽 while 

satisfying the following constraints. Local cell and local hub constraints appear in left 

column, urban area and gateway hub constraints in the right column. Throughout, we index 

unit zones by 𝑖 and 𝑗, local cells by 𝑘, urban areas by 𝑘’, and local and gateway hubs by ℎ. 

 

Zone-to-cluster assignment constraints 

∑ 𝑥𝑖𝑘
𝐶

𝑘 = 1  Ɐ𝑖    (2) ∑ 𝑥𝑖𝑘′
𝐴

𝑘′ = 1 Ɐ𝑖,             (3) 

𝑥𝑖𝑘
𝐶 , 𝑥𝑖𝑘

𝐴 ∈ 0,1              (4) 

 

Each UZ must be in precisely one LC and precisely one UA. 

 

Tree flow constraints, ensuring contiguity of clusters 
We use flow constraints, introduced in Shirabe 2009, to ensure the contiguity of each LC and 

UA. Each cluster has one of its UZ designated as the root of a tree in the subgraph of 𝐺 

induced by the vertices of the cluster tracked by the decision variables 𝑟𝑖𝑘. The choice of root 

otherwise has no meaning. The remaining constraints force a flow 𝑡 (abstract and unrelated to 

the flow of commodities in the network) on the tree. Alternative contiguity constraints may be 

used, such as the lengthier but stricter separator constraints introduced in Validi et al., 2020. 

 

Multi-level clustering constraints, ensuring proper inclusion 

 𝑐𝑙𝑢𝑠𝑡𝑒𝑟min ≤  ∑ 𝑐𝑘𝑘
′

𝑘 ≤  𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑚𝑎𝑥  Ɐ 𝑘′,          (5) 

  ∑ 𝑐𝑘𝑘
′

𝑘′ = 1   Ɐ 𝑘,             (6) 

(𝑥𝑖𝑘
𝐶 +  𝑐𝑘𝑘

′ )/2 ≥  𝑥𝑖𝑘′
𝐴   Ɐ 𝑖, 𝑘, 𝑘′,           (7) 

 𝑐𝑘𝑘′ ∈ {0,1}.              (8) 

 

These constraints govern the relationship of LC to UA. The decision variables 𝑐𝑘𝑘
′  track 

whether LC 𝑘 is contained in UA 𝑘′. Each UA must contain between 𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑚𝑖𝑛 and 

𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑚𝑎𝑥 LCs, and LCs may not overlap multiple UA. 
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Hub-to-cluster assignment constraints 

𝑎ℎ𝑘
𝐶 ≤  ∑ 𝑥𝑖𝑘𝑖∈𝑁(ℎ)   Ɐ ℎ, 𝑘,   (9) 𝑎ℎ𝑘

′𝐴 ≤  ∑ 𝑥𝑖𝑘
′

𝑖∈𝑁(ℎ)   Ɐ ℎ, 𝑘′,         (11) 

∑ 𝑎ℎ𝑘
𝐶

𝑘 ≥  ℎ𝑢𝑏𝑠minⱯℎ,   (10) ∑ 𝑎ℎ𝑘
′𝐴

𝑘 ≥  ℎ𝑢𝑏𝑠𝑚𝑖𝑛
′  Ɐ ℎ,        (12) 

𝑎ℎ𝑘
𝐶 , 𝑎ℎ𝑘

′𝐴 ∈ {0,1}.           (13) 

 

Hubs (both LH and GH) may only serve a cluster (the corresponding decision variable 𝑎ℎ𝑘(′) 

is 1) if they are near to it. In particular, the cluster must intersect the hub's neighborhood 

𝑁(ℎ). Furthermore, each hub must serve at least ℎ𝑢𝑏𝑠min(′)LC or UA, respectively. 

  

Hub-to-zone assignment constraints 

 𝑦𝑖𝑘ℎ
𝐿𝐻 ≤  (𝑥𝑖𝑘 +  𝑎ℎ𝑘

𝐶 )/2    Ɐ 𝑖, 𝑘, ℎ,      (14) 𝑦𝑖𝑘′ℎ
𝐺𝐻 ≤ (𝑥𝑖𝑘′ +  𝑎ℎ𝑘′

𝐴 )/2 Ɐ 𝑖, 𝑘′, ℎ        (16) 

𝑦𝑖ℎ
𝐿𝐻 ≤  ∑ 𝑦𝑖𝑘ℎ

𝐿𝐻
𝑘   Ɐ𝑖, ℎ,    (15) 𝑦𝑖ℎ

𝐺𝐻 ≤  ∑ 𝑦𝐴𝑖𝑘ℎ
′

𝑘′  Ɐ 𝑖, ℎ,        (17) 

𝑦𝑖ℎ
𝐴𝐻, 𝑦𝑖𝑘ℎ

𝐿𝐻 , 𝑦𝑖ℎ
𝐿𝐻, 𝑦𝑖𝑘′ℎ

𝐺𝐻 , 𝑦𝑖ℎ
𝐺𝐻 ∈ {0,1}.         (18) 

 

 These constraints combine the UZ-to-cluster decision variables 𝑥 and the hub-to-cluster 

decision variables 𝑎 to assign the values of variables 𝑦 that track whether a UZ 𝑖 can send 

flow to a hub ℎ. 

  

Total demand constraints  

𝜙𝑖𝑗 =   𝑓𝑖𝑗
𝐶 + ∑ 𝑑𝑖𝑗ℎ

𝐿𝐻
ℎ =  𝑓𝑖𝑗

𝐶 +  𝑓𝑖𝑗
𝐴 + ∑ 𝑑𝑖𝑗ℎ

𝐺𝐻  ,ℎ   Ɐ 𝑖, 𝑗      (19) 

 

These constraints require that all demand 𝜙𝑖𝑗 be met. All demand must either be met with 

horizontal flow within an LC or go to an LH, and likewise must either be met with horizontal 

flow within a UA or go to a GH. 

 

Total capacity constraints 

𝜅ℎ +  ∑ 𝑧ℎ𝑚𝜒ℎ𝑚𝑚 =  𝑐ℎ    Ɐ ℎ,         (20) 

∑ 𝑑𝑖𝑗ℎ
𝐿𝐻

𝑖,𝑗  − 𝑏𝑙ℎ ∑ 𝜙𝑖𝑗𝑖,𝑗  ≤  𝐵𝑙𝑐ℎ  Ɐ 𝑙, ℎ,          (21) 

 𝑧ℎ𝑚, 𝑏𝑙ℎ  ∈ {0,1},  𝑑𝑖𝑗ℎ
𝐿𝐻 , 𝑑𝑖𝑗ℎ

𝐺𝐻 , 𝑐ℎ ≥  0.        (22) 

 

These constraints require that the capacity of all hubs be maintained. The base capacity of a 

hub ℎ is 𝜅ℎ, but this can be increased be adding modules (tracked with decision variables 

𝑍ℎ𝑚) each with additional capacity 𝜒ℎ𝑚. The thresholds 𝐵𝑙, which determine the balance 

component of the objective, are checked and 𝑏𝑙ℎ is forced to be 1 if the threshold is exceeded. 

 

Horizontal flow constraints 

𝑒𝑖𝑗𝑘
𝐶 ≤ (𝑥𝑖𝑘

𝐶 + 𝑥𝑗𝑘
𝐶 )/2,   Ɐ 𝑖, 𝑗, 𝑘 ,  (23) 𝑒𝑖𝑗𝑘′

𝐴 ≤ (𝑥𝑖𝑘′
𝐴 + 𝑥𝑖𝑘′

𝐴 )/2,   Ɐ 𝑖, 𝑗, 𝑘′,       (25) 

𝑓𝑖𝑗
𝐶 ≤  ∑ 𝑒𝑖𝑗𝑘

𝐶
𝑘  Ɐ𝑖, 𝑗,     (24) 𝑓𝑖𝑗

𝐴 ≤  ∑ 𝑒𝑖𝑗𝑘′
𝐴

𝑘  Ɐ𝑖, 𝑗,           (26) 

𝑒𝑖𝑗𝑘
𝐶 , 𝑒𝑖𝑗𝑘′

𝐴 , ∈ {0,1},  𝑓𝑖𝑗
𝐶 , 𝑓𝑖𝑗

𝐴 ≥  0.         (27) 

These constraints check the feasibility of horizontal flow. The variables 𝑒𝑖𝑗𝑘, which are 1 if 

both 𝑖 and 𝑗 are in cluster 𝑘 and 0 otherwise, are set using the 𝑥𝑖𝑘. Horizontal flow 𝑓𝑖𝑗  is 

permitted only if both unit zones are in the same cluster. 

 

Vertical flow constraints 

𝑑𝑖𝑗ℎ
𝐿𝐻 ≤  𝑦𝑖ℎ

𝐿𝐻  Ɐ 𝑖, ℎ,    (28) 𝑑𝑖𝑗ℎ
𝐺𝐻 ≤  𝑦𝑖ℎ

𝐺𝐻   Ɐ 𝑖, ℎ,           (30) 
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𝑑𝑖𝑗ℎ
𝐿𝐻 ≤  𝜌𝐿𝐻 ⋅ 𝜙𝑖𝑗   Ɐ 𝑖, ℎ,   (29)  𝑑𝑖𝑗ℎ

𝐺𝐻 ≤  𝜌𝐺𝐻 ⋅ 𝜙𝑖𝑗   Ɐ 𝑖, ℎ.         (31) 

 

The first two constraints enforce that flow from a UZ may only be sent to a hub that can serve 

that UZ (tracked by the decision variable 𝑦). We assume that all demand 𝜙, and hence all 

flow 𝑑, is scaled to be bounded by 1 (if not, the RHS can be scaled appropriately.) The second 

two constraints enforce resiliency and robustness in the network. No more than 𝜌 fraction of 

the flow for a given OD pair can be sent through a particular hub. 

4 Integration and interaction with other aspects of network redesign 
This clustering model is not a standalone method for network redesign. In this section, we 

examine how it integrates with methods for solving both hub candidate selection and network 

structure design problems. Each of these problems addresses one or more difficult 

computational aspects of the entire redesign problem, and approximates or does not consider 

the other aspects. The problems complement each other, so that repeatedly iterating between 

the problems provides a computationally tractable method that addresses all aspects of the 

high-level network redesign problem. Figure 2 (left) gives an overview of the information 

each of the three problems outputs and then gives as input to the other problems.  
 
4.1 Hub candidate selection 
The hub candidate selection process takes as input a very large set of points in the city 

(potentially tens of thousands of candidates.) It uses a combination of GIS methods, 

optimization techniques, and local expertise, incorporating zoning and other factors that may 

affect hub placement, to reduce the size of this set by roughly an order of magnitude. It both 

provides initial input to and interacts with the output of the clustering process. Further details, 

including the shape-based methods for determining candidate feasibility and the programs 

used to obtain optimal candidate sets, are given in Muthukrishnan et al. (2021). Figure 2 

(right) depicts the steps in fine-tuning the candidate list, as well as the methods used. 

 

 
Figure 2: The iteration process and information flow between the methods of the network 

restructuring process; the steps and techniques used for hub candidate selection 

 

4.2 Network structure design 
The network structure design process takes as input a demand profile (modeled as 

commodities, each with a single origin and destination), a set of hub candidates (with 

associated costs), and a set of arcs between pairs of hubs, along which flow can be sent (with 

associated distances and costs.) The objective of structure design is to determine which hubs 

and which arcs to open and choose a corresponding feasible timed flow pattern, in such a way 
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as to minimize cost. It also includes considerations for specific local requirements, such as 

varying traffic patterns and legal restrictions on freight transfers. This problem comes with 

considerable computational challenges in large instances. 

 

While clustering is not a direct input to network structure design, it is implicitly captured in 

the set of arcs which are chosen out of all possible arcs between pairs of hubs. In the 

hyperconnected web, only pairs of AH in the same LC may have an arc between them. 

Therefore, choosing a clustering dramatically reduces the set of available arcs. Furthermore, 

in combination with the hub candidate selection methods as discussed above, hub candidates 

far from the boundary of clusters can be discarded. Both of these steps help reduce the size of 

the structure design instance and aid computational feasibility. In turn, the output of structure 

design provides a new potential set of hubs, as well as a detailed commodity flow on the 

graph, when used as input to another iteration of clustering. In particular, the shipping cost 

terms 𝑑𝑖𝑗ℎ
𝐿𝐻 (𝜆𝑖ℎ + 𝜆𝑗ℎ) and 𝑑𝑖𝑗ℎ

𝐺𝐻 (𝜆𝑖ℎ + 𝜆𝑗ℎ) in the objective of the clustering model are only 

approximations of the cost incurred in sending a commodity between 𝑖 and 𝑗 through hub ℎ. 

Indeed, most parcels take a multi-hub voyage including AH, LH, and one or more GH, with 

cost depending on the number and type of vehicles employed on the arcs of that trip, rather 

than being fixed. Thus, after an iteration of the method for network structuring, which 

includes in its output the real costs for all arcs used by the plan, in the next iteration of 

clustering the objective term for all such arcs is replaced by the result from network 

structuring. This improves the approximation of the objective and allows the clustering to 

adapt and improve based on its performance.   

5 Implementation 
In this section, we discuss details of implementation and warm-starting for the MIP approach. 

This process assumes the following: a graphical model of the city; a demand profile on the 

city, as in Subsection 2.2; and an existing or starting list of LC and UA assignments for UZ. 

 

5.1 Preprocessing 
First, an auxiliary and artificial UZ is created for each GH. These UZ are used only to track 

intracity demand whose source or destination is a GH. Each such UZ 𝑖𝑔 is assigned to its own 

auxiliary LC 𝑘𝑔, and the constraint 𝑥𝑖𝑘𝑔 = 0, Ɐ 𝑖 ≠  𝑖𝑔 is added to the model for each such 

𝑖𝑔, so that the LC consists only of the UZ. These LC exist only for the purpose of tracking 

flow in the MIP. Next, demand data is broken into intercity and intracity components. All 

intracity demand (UZ to UZ) becomes a corresponding term 𝜙𝑖𝑗. All intercity demand (UZ to 

GH or GH to UZ) is then assigned to a specific GH based on desired high-level flow patterns 

in the network. If the city contains multiple GH, this choice may depend on the facilities 

available at each GH or on the particular source or destination of the flow, so that parcels go 

to/from a GH that is close to their destination and source. Once this demand is assigned to a 

GH, it is expressed as a UZ-UZ demand, using the auxiliary UZ constructed for the GH.  

 

5.2 Striping and warm-starting the MIP 
To obtain a clustering that can be used to warm-start the MIP, we use the striping path-based 

algorithm introduced by Hettle et al. (2021). This algorithm takes as input a graph 𝐺 =
(𝑉, 𝐸) with vertex weights 𝑤(𝑣) for all 𝑣 ∈ 𝑉, a desired number of parts 𝑘, a balance 

parameter 휀, and a Hamiltonian path (𝑣1, … 𝑣𝑛) on 𝐺. We say that a partition is consistent 

with the Hamiltonian path used as input if each of its parts is a consecutive subpath of 

(𝑣1, … 𝑣𝑛). Using a dynamic programming framework, the algorithm returns a consistent 
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partition of 𝑉 into 𝑘 parts, which correspond to local cells, and each of which is contiguous 

and is 휀-balanced (has total weight within 휀 fraction of the average). Moreover, the total 

perimeter of the LCs in this partition is the smallest possible among all possible balanced 휀-

balanced consistent partitions. We apply this method to the graph 𝐺 of unit zones, with the 

weight of each vertex given by its total demand. The choice of path is critical to producing a 

partition with compact parts, and we construct a Hamiltonian path by applying the uncrossing 

approximation algorithm for the traveling salesman problem on instances with a Euclidean 

metric (Van Leeuwen and Schoone, 1981). Even over multiple urban areas, both the path and 

the striping solution can be computed in under one minute and repeated with different paths 

and parameters to obtain multiple warm starts. Uncrossing requires at most 𝑂(|𝑉|3) steps, and 

by using dynamic programming and exploiting the structure of the cut function used to 

calculate the perimeter objective for compactness, the striping algorithm runs in 𝑂(|𝑉|2) time. 

 

Given the initial warm-start clustering, as well as the auxiliary UZ and LC, we initialize 

variables 𝑥𝑖𝑘, and thus the variables 𝑒𝑖𝑗𝑘, 𝑎ℎ𝑘, 𝑦𝑖𝑘ℎ, and 𝑦𝑖ℎ, which depend only on 𝑥𝑖𝑘, are 

also set. Next, we determine the starting values for the variables used in the tree flow 

constraints for contiguity, for instance by using a breadth-first search tree on the subgraph of 

𝐺 induced by the vertices in each cluster 𝑘. Then we determine starting values for the vertical 

flow variables 𝑑𝑖𝑗ℎ and the horizontal flow variables 𝑓𝑖𝑗. We assign flow so as to minimize the 

flow cost terms of the objective, while not yet considering the hub capacity balance term. For 

each pair (𝑖, 𝑗) of unit zones, if the horizontal flow between them is cheaper than the vertical 

flow, we send all flow horizontally. Otherwise, we send flow vertically by greedily choosing 

the cheapest paths while respecting the resiliency constraints. 

6 Example in southwestern Shenzhen 
In this section, we describe an experiment in a large-scale setting, applying our model to a 

part of the SF Express network in Shenzhen. As input, we take a group of seven LCs in the 

southwest of Shenzhen, created using the striping method. The demand profile is based on 

customer behavior and the market share of SF Express, as well as on 1-day delivery times. 

Over 80% of demand associated with these cells is intercity, going to or from a GH. 

Therefore, auxiliary UZ are added as described above. For efficiency, some 𝑥𝑖𝑘 and other 

decision variables that depend on the 𝑥𝑖𝑘 were forced to be 0. For instance, for UZ in the 

easternmost part of the region, corresponding 𝑥𝑖𝑘 were set to 0 for 𝑘 = 1 (the relatively 

remote dark blue LC in the southwest). All distances were computed using the length of a 

geodesic between the two points, with UZs represented by the centroid. Local hub 

neighborhoods were set to be those UZs whose centroids are within 1000m of the LH. This 

was sufficient in this instance, where density is still relatively great even in the less populated 

eastern UZs, but more sophisticated method where the distance changes throughout the city, 

increasing in less dense areas, are possible. Local hubs had starting capacity 3000 with up to 

ten optional modules of capacity 250, at cost of 5,000,000 units each. 

 

6.1 Results 
The results of applying our clustering model are shown in Figure 3. The model makes 

significant changes that resulted in more compact and roughly equal-demand clusters. Table 1 

shows the breakdown of the various cost components of the objective function for both 

clusterings. The clustering changes are reflected in a significantly reduced compactness cost, 

modeling the expected reduction in rider operation costs. The costs of overall flow also 

decreased slightly, and flow was rerouted to require one fewer module to be added to local 

cells. Overall, the new clustering reduces the objective value by more than 6%. 
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Figure 3: The warm-start clustering of local cells (left) and a new proposed clustering (right). 

 
Table 1: The costs of the clusterings in Figure 3. 

 Flow cost Compactness Balance Modules Total cost 

Warm-start clustering 4.54×10
8 

8.32×10
7
 2×10

7
 2×10

7
 5.77×10

8 

New clustering 4.32×10
8
 7.62×10

7
 2×10

7
 1.5×10

7
 5.43×10

8
 

7 Conclusion 
The clustering problem in unit zone, local cell, and urban area assignment is critical in 

designing a logistics hyperconnected web network. We have shown that it can be effectively 

solved using a mixed integer program which incorporates considerations such as geographic 

compactness and contiguity, hub demand capacity, and resiliency. Furthermore, the MIP can 

be effectively warm-started using techniques from graph partitioning, such as striping, and 

has useful interactions with other problems in hyperconnected logistics network design. Given 

the large size and manifold considerations of the MIP, computational challenges do remain in 

very large instances, which further work may improve. Increased use of additional heuristics 

in concert with the MIP may be able to improve performance by streamlining some aspects of 

the model or exploiting geographic structure. Further development of the relationship between 

clustering, network design, and hub candidate selection is also a potentially rich area of study. 
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