Sum of Squares Hierarchies for the Stability Number of a Graph

Luis Felipe Vargas* CWI, Amsterdam

luis.vargas@cwi.nl

Monique Laurent CWI, Amsterdam, and Tilburg University

monique.laurent@cwi.nl

Problem

The stability number $\alpha(G)$ of a graph G = (V, E) is the largest cardinality of a stable set in G. Computing $\alpha(G)$ is a central problem in combinatorial optimization, well-known to be NP-hard [Karp, 1972].

Figure 2: $\alpha = 2$ ϑ -rank(G) = 1G critical

A starting point to define hierarchies of approximations for the stabil-

Figure 3: $\alpha = 3$

 ϑ -rank(G) = 2

G critical.

Figure 4: The

every even cycle is acritical. **Figure 5:** C_4 is

ity number is the following formulation by Motzkin and Straus [1965], which expresses $\alpha(G)$ via quadratic optimization over the standard simplex $\Delta_n = \{x \in \mathbb{R}^n : x \ge 0, \sum_{i=1}^n x_i = 1\}$:

$$\frac{1}{\alpha(G)} = \min\{x^T (A_G + I)x : x \in \Delta_n\},\tag{M-S}$$

where A_G is the adjacency matrix of G.

Based on (M-S), de Klerk and Pasechnik in [2] proposed the copositive reformulation:

$$\alpha(G) = \min\{t : t(I + A_G) - J \in \mathbf{COP}_n\},\$$

where $COP_n = \{M \in \mathcal{S}^n : x^T M x \geq 0 \ \forall x \in \mathbb{R}^n_+ \}$ is the copositive cone. Parrilo [1] introduced the cones:

$$\mathcal{K}_n^{(r)} = \Big\{ M \in \mathcal{S}^n : \Big(\sum_{i=1}^n x_i^2\Big)^r (x^{\circ 2})^T M x^{\circ 2} \text{ is a sum of squares} \Big\}.$$

Notice that $\mathcal{K}_n^{(r)} \subseteq \text{COP}_n$ for any $r \geq 0$. Here, $x^{\circ 2} = (x_1^2, x_2^2, \dots, x_n^2)$. De Klerk and Pasechnik [2] used these cones to define the following parameters:

$$\vartheta^{(r)}(G) = \min\{t : t(I + A_G) - J \in \mathcal{K}_n^{(r)}\},\$$

Some known results about this hierarchy are the following:

- $\alpha(G) \le \vartheta^{(r+1)}(G) \le \vartheta^{(r)}(G)$.
- $\vartheta^{(r)}(G) \to \alpha(G)$ as $r \to \infty$.
- $\vartheta^{(0)} = \vartheta'(G)$. Here, $\vartheta'(G)$ is the stengthening of the Lovász theta number (with nonnegativity).
- $\vartheta^{(r)}(G) < \alpha(G) + 1$ for $r \ge \alpha(G)^2$ (see [2]).
- $\vartheta^{(\alpha(G)-1)}(G) = \alpha(G)$ for every graph with $\alpha(G) \leq 8$ (see [3]).

Conjecture 1 (De Klerk and Pasechnik, 2002). For any graph G we have: $\vartheta^{(\alpha(G)-1)}(G) = \alpha(G)$.

Is it not even know whether finite convergence holds:

Conjecture 2 (weaker). For any graph G there exists $r \in \mathbb{N}$ such that $\vartheta^{(r)}(G) = \alpha(G)$.

In other words Conjecture 2 is claiming that the polynomial

$$\left(\sum_{i=1}^{n} x_i^2\right)^r (x^{\circ 2})^T \left(\alpha(G)(A_G + I) - J\right) x^{\circ 2} \tag{1}$$

is a sum of squares for some $r \in \mathbb{N}$, while Conjecture 1 is claiming the same result for $r = \alpha(G) - 1$. Define the ϑ -rank(G) as the smallest r for which the polynomial (1) is sum of squares or, equivalently, the smallest r for which $\vartheta^{(r)}(G) = \alpha(G)$.

Example 1

If $\overline{\chi}(G) = \alpha(G)$ (that is, V is covered by $\alpha(G)$ cliques), then ϑ -rank(G) = 0.

Example 2

Let $G = C_5$ be the 5-cycle and let $M = 2(A_G + I) - J$. then

$$\left(\sum_{i=1}^{5} x_i^2\right) x^{\circ 2^T} M x^{\circ 2} = \sum_{circ} x_1^2 (x_5^2 + x_1^2 + x_2^2 - x_3^2 - x_4^2)^2 + 4(x_1^2 x_2^2 x_4^2 + x_2^2 x_3^2 x_5^2 + x_3^2 x_4^2 x_1^2) + 4(x_4^2 x_5^2 x_2^2 + x_5^2 x_1^2 x_3^2).$$

Hence, it is a sum of squares. It shows that ϑ -rank $(C_5) \leq 1$.

Role of Critical Edges

An edge e of a graph G is *critical* if $\alpha(G \setminus e) = \alpha(G) + 1$. We say that G is *critical* if all its edges are critical and *acritical* if it does not have critical edges.

Every odd cycle is critical while

acritical Petersen graph is acritical

- It suffices to prove Conjectures 1 and 2 for critical graphs.
- For any acritical graph with $\alpha \leq 8$ we have $\vartheta^{(\alpha-2)}(G) = \alpha(G)$.
- The problem of deciding whether $\vartheta^{(0)}(G) = \alpha(G)$ can be reduced in polynomial time to the same problem for acritical graphs (for fixed $\alpha(G)$).
- We can characterize the set of critical graphs with ϑ -rank = 0:

Theorem 1. Let G be a critical graph. Then ϑ -rank(G) = 0 (i.e, $\vartheta^{(0)}(G) = \alpha(G)$) if and only if G is the disjoint union of cliques.

Minimizers of (M-S)

Critical edges also play a crucial role in the analysis of the minimizers of (M-S)

Theorem 2. Let x be feasible for (M-S) with support $S := \{i : x_i > 0\}$ 0}, and C_1, C_2, \ldots, C_k the connected components of the graph G[S]. Then x is an optimal solution of (M-S) if and only if the following holds:

- $k = \alpha(G)$,
- C_i is a clique of critical edges of G for all $i \in [k]$,
- $\sum_{j \in C_i} x_j = \frac{1}{\alpha(G)}$ for all $i \in [k]$.

Example 3

Every optimal solution of problem (M-S) associated to C_5 has the following form (up to symmetry)

$$x_1 = \frac{1}{2}$$
, $x_3 + x_4 = \frac{1}{2}$ and $x_2 = x_5 = 0$.

The only two optimal solutions of problem

Example 4

Corollary 2.1. *Problem (M-S) has finitely many optimal solutions* if and only if G has no critical edges.

- The property of having finitely many minimizers is very helpful in the convergence analysis.
- We can perturb the Motzkin Strauss formulation such that it has finitely many minimizers:

$$\frac{1}{\alpha(G)} = \min\{x^T (A_c + A_G + I)x : x \in \Delta_n\}, \quad \text{(M-S-perturbed)}$$

where A_c is the adjacency matrix by just considering the critical edges.

Theorem 3. If there is a polynomial-time algorithm for deciding whether a standard quadratic program has finitely global minimizers, then P=NP.

Main Result

If G is acritical then we can prove Conjecture 2.

Theorem 4. Let G be an acritical graph, then there exists $r \in \mathbb{N}$ such that $\vartheta^{(r)}(G) = \alpha(G)$.

Sketch of the Proof

We consider the Lasserre sum of squares hierarchy applied to problem (M-S). Let $f_G(x) = x^T (A_G + I)x$ and

$$f_G^{(r)} = \sup \lambda \text{ s.t } f_G - \lambda = \sigma_0 + \sum_{i=1}^n x_i \sigma_i + \left(\sum_{i=1}^n x_i - 1\right) q(x),$$

where σ_0, σ_i are sum of squares, $\deg(\sigma_0) \leq 2r, \deg(\sigma_i) \leq 2r - 1$.

Then
$$f_G^{(r)} \leq f_G^{(r+1)} \leq \frac{1}{\alpha(G)}$$
 and $f_G^{(r)} \to \frac{1}{\alpha(G)}$ as $r \to \infty$. We can link the bounds $\vartheta^{(r)}(G)$ and $f_G^{(r)}$:

For any integer $r \ge 0$ we have

$$\alpha(G) \le \vartheta^{(2r)}(G) \le \frac{1}{f_G^{(r)}}.$$

- 1) Proving finite convergence of the bounds $f_G^{(r)}$ implies finite convergence for the bounds $\vartheta^{(r)}$.
- 2) The classical sufficient optimality condition for nonlinear programming are satisfied at every global minimizer of (M-S) when G is acritical.
- 3) Using a real algebraic result of Marshall and Nie we conclude finite convergence of both hierarchies for the class of acritical graphs.

Comments and Open Questions

- The fact of having finitely many minimizers is necessary for satisfying the optimality conditions in 2).
- We can consider the hierarchy $\tilde{\vartheta}^{(r)}(G)$ derived by starting with the formulation (M-S-perturbed) instead of (M-S). The difference is that now we always have finitely many minimizers.

Theorem 5. For any graph G there exists $r \in \mathbb{N}$ such that $\vartheta^{(r)}(G) = \alpha(G).$

Question 1. *Is it true that* $\tilde{\vartheta}^{(r)}(G) = \vartheta^{(r)}(G)$ *for all* $r \in \mathbb{N}$? So far we know that it is true for r = 0.

References

- [1] P.A. Parrilo. Structured Semidefinite Programs and Semialgebraic Geometry Methods in Robustness and Optimization. PhD thesis, California Institute of Technology, 2000.
- [2] E. de Klerk and D. Pasechnik. Approximation of the stability number of a graph via copositive programming. SIAM Journal on Optimization, 12:875–892, 2002.
- [3] N. Gvozdenović and M. Laurent. Semidefinite bounds for the stability number of a graph via sums of squares of polynomials. Mathematical Programming, 110:145–173, 2007.
- [4] M. Laurent and L.F. Vargas. Finite convergence of sumof-squares hierarchies for the stability number of a graph. https://arxiv.org/abs/2103.01574.