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Problem

The stability number o(G) of a graph G = (V, E)) is the largest car-
dinality of a stable set in G. Computing «(G) is a central problem in
combinatorial optimization, well-known to be NP-hard [Karp, 1972].

Figure 1: a = 3 Figure 2: o = 2 Figure 3: o = 3
Y-rank(G) = 0 Y-rank(G) = 1 Y-rank(G) = 2
(G acritical (& critical (G critical.

A starting point to define hierarchies of approximations for the stabil-
1ty number 1s the following formulation by Motzkin and Straus [ 1965],
which expresses «(G) via quadratic optimization over the standard
simplex Ay, = {z € R": 2 >0,> 1 ;x; =1}

1
oG = min{z! (Ag + Dz : z € Ay}, (M-S)

where A is the adjacency matrix of G.

Based on (M-S), de Klerk and Pasechnik in [2] proposed the coposi-
tive reformulation:

a(G) =min{t : t(I + Ag) — J € COP,},

where COP, = {M € 8" : z' Mz > 0Vz € R’ } is the copositive
cone. Parrilo [1] introduced the cones:

[/

n
.
/Cf,(;’“) = {M eS": (Z :z:z) (z°2) T M2 is a sum of squares}.
1=1
Notice that IC%T) C COP,, for any r > 0. Here, 2°% = (x%, :z:%, TR,
De Klerk and Pasechnik [2] used these cones to define the following
parameters:

ITNG) = min{t - t(I + Ag) — J € KN,
Some known results about this hierarchy are the following:
+a(G) < 9UHI(G) < 96,
«9(G) = a(G) as r — co.

« 9(0) = ¢¥(G). Here, ¥(G) is the stengthening of the Lovasz
theta number (with nonnegativity).

«I(G) < a(@) + 1 forr > a(G)? (see [2]).
e 9(G)=1)(@) = a(G) for every graph with a(G) < 8 (see [3]).

Conjecture 1 (De Klerk and Pasechnik, 2002). For any graph G
we have: 9GO -1(G) = a(Q).

Is it not even know whether finite convergence holds:

Conjecture 2 (weaker). For any graph G there exists v € N such
that 9\7)(@) = a(G).

In other words Conjecture 2 1s claiming that the polynomial

n
.
(Z xg) (2°2)T (a(G)(AG 1) — J)xcﬁ (1)
1=1

1s a sum of squares for some » € N, while Conjecture 1 is claiming
the same result for » = a(G) — 1. Define the ¥J-rank(() as the smallest
r for which the polynomial (1) is sum of squares or, equivalently, the
smallest r for which 9(")(G) = a(G).

Example 1

If ¥(G) = a(G) (that is, V is covered by a(G) cliques), then
Y-rank(G) = 0.

Example 2
Let G = C5 be the 5-cycle and let M = 2(Ag + ) — J. then

5]
T
(Z x%) 12" Ma°? = Zx%(az% — x% + x% — x% — xi)Q

1=1 cire
-+ 4(:6%:6%:6421 + x%x%x% + x%xix%)

+ A(zixizs + ziriad).

Hence, it is a sum of squares. It shows that ¥-rank(C’5) < 1.

Role of Critical Edges

An edge e of a graph G is critical if a(G \ e) = a(G) + 1. We say that
G 1s if all 1ts edges are critical and if 1t does not have
critical edges.

every even cycle 1s acritical.

Figure 4: The
Petersen graph
1S

Figure 5: () is

e It suffices to prove Conjectures 1 and 2 for critical graphs.
« For any acritical graph with @ < 8 we have 9(*~2)(@) = a(G).
e The problem of deciding whether 9(%)/(@) = a(G) can be re-

duced in polynomial time to the same problem for acritical
graphs (for fixed a(G)).

e We can characterize the set of critical graphs with ¥-rank = 0:

Theorem 1. Let G be a critical graph. Then v-rank(G) = 0 (i.e,
19<O>(G) = «(@)) if and only if G is the disjoint union of cligues.

Minimizers of (M-S)

Critical edges also play a crucial role in the analysis of the minimizers
of (M-S)

Theorem 2. Let x be feasible for (M-S) with support S .= {i : x; >

0}, and C1,Cy, ..., C). the connected components of the graph
G|S|. Then x is an optimal solution of (M-S) if and only if the
following holds:

ok = a(G),
» C; is a cligque of critical edges of G for all i € k|,

. :E-:Lforallie k).
EJ 7 ele) “

| Example 3
! Every optimal solution of problem (M-S)
. , associated to Cj has the following form (up
to symmetry)
: + : d 0
L] 9 L3 T L4 5 and ry = I5
Example 4

The only two optimal solutions of problem
(M-S) associated to Cg are

1
x1:x3:x5:§,x2:x4:x620and

1
x1:x3:x520,x2:x4:x6:§.

Corollary 2.1. Problem (M-S) has finitely many optimal solutions
if and only if G has no critical edges.

e The property of having finitely many minimizers is very helpful in
the convergence analysis.

* We can perturb the Motzkin Strauss formulation such that it has
finitely many minimizers:

1
@ — mjn{QjT(AC +Aqg+1Dx:x € Ay}, (M-S-perturbed)
o)

where A is the adjacency matrix by just considering the critical edges.

Theorem 3. If there is a polynomial-time algorithm for deciding

whether a standard quadratic program has finitely global minimiz-
ers, then P=NP.

Every odd cycle 1s critical while

Main Result

If G 1s acritical then we can prove Conjecture 2.

Theorem 4. Let G be an acritical graph, then there exists r € N
such that 9")(G) = a(G).

Sketch of the Proof

We consider the Lasserre sum of squares hierarchy applied to problem
(M-S). Let fa(z) = 2! (Aq + Iz and

fg> =sup A st fo— A= O'O""Zwio-i—'_ (Zmz - 1)Q(I>,

1=1 1=1

where (), o; are sum of squares, deg(o() < 2r, deg(o;) < 2r — 1.

Then fg> < ng) < ﬁ and fg> 04(1G> as r — 0.

We can link the bounds ¢(")(G) and fg ).

For any integer » > (0 we have

)

1) Proving finite convergence of the bounds fg implies finite conver-

gence for the bounds 9,

2) The classical sufficient optimality condition for nonlinear program-
ming are satisfied at every global minimizer of (M-S) when G 1is
acritical.

3) Using a real algebraic result of Marshall and Nie we conclude finite
convergence of both hierarchies for the class of acritical graphs.

Comments and Open Questions

e The fact of having finitely many minimizers is necessary for satis-
fying the optimality conditions in 2).

» We can consider the hierarchy 9{")(@) derived by starting with the
formulation (M-S-perturbed) instead of (M-S). The difference 1s
that now we always have finitely many minimizers.

Theorem 5. For any graph G there exists v € N such that
IN(G) = a(G).

Question 1. Is it frue that 9")(G) = 9")(G) for all r € N?

So far we know that it 1s true for r = 0.
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