

ECE 8823 A / CS 8803 - ICN Interconnection Networks Spring 2017

http://tusharkrishna.ece.gatech.edu/teaching/icn_s17/

Lecture 4: Routing

Tushar Krishna

Assistant Professor School of Electrical and Computer Engineering Georgia Institute of Technology

tushar@ece.gatech.edu

Acknowledgment: Some slides adapted from Univ of Toronto ECE 1749 H (N Jerger) and MIT 6.883 (L-S Peh)

Network Architecture

Topology

- How to connect the nodes
- ~Road Network

Routing

- Which path should a message take
- Series of road segments from source to destination

Flow Control

- When does the message have to stop/proceed
- Traffic signals at end of each road segment

Router Microarchitecture

- How to build the routers
- ~Design of traffic intersection (number of lanes, algorithm for turning red/green)

Routing

Once topology is fixed, routing determines exact path from source to destination

Analogous to the series of road segments from

source to destination

Why does Routing matter?

- Suppose three routing options
 - Greedy: shortest path
 - Random: randomly pick direction
 - Adaptive: monitor load in each direction and send
- Which routing algorithm is the best?
 - Depends ...what is the traffic pattern?
 - What metric (latency/throughput/energy) do we care about?

Suppose Traffic = Tornado

- k-ary n-cube, node_i \rightarrow node_{(i + (k/2) 1) mod k}
 - Here k = 8, node_i → node_{i+3 mod 8}

Metric = Zero-load Latency

	Greedy	Random	(Adaptive)
Hops	3	(3+5)/2 = 4	3 at low-loads

Metric = Energy

	Greedy	Random	(Adaptive)
Hops	3	(3+5)/2 = 4	3 at low-loads

Metric = Throughput

	Greedy	Random	Adaptive
Max Channel Load			
Throughput			

Channel Load for Greedy Traffic

- All traffic moves anti-clockwise
 - Clockwise channels are idle

Channel Load for Random Traffic

Channel Load for Adaptive Traffic

- Assume ideal implementation
- For equal load on both anti-clockwise and clockwise links, suppose each node sends a fraction f anticlockwise, and (1-f) clockwise
 - Channel Load = 3f = 5(1-f)
 - f = 5/8
 - Send 5/8th traffic anticlockwise, 3/8th traffic clockwise
 - Channel Load = 15/8, Throughput = 8/15

Metric = Throughput

	Greedy	Random	Adaptive
Max Channel Load	3	5/2 = 2.5	15/8= 1.875
Throughput	1/3 = 0.33	2/5 = 0.4	8/15 = 0.53

Taxonomy of Routing Algorithms

- Classification I: path length
 - Minimal: shortest paths
 - Example: Greedy over Ring
 - Non-minimal: non-shortest paths
 - Example: Random and Adaptive over Ring

Taxonomy of Routing Algorithms

- Classification II: path diversity (how to select between the set of all possible paths R_{xy} from the source x to the dest y)
 - **Deterministic:** always choose the same route between x and y, even if $|R_{xy}| > 1$
 - **Example:** Greedy over Ring
 - Most restrictive but most popular due to ease of implementation and analysis
 - Oblivious: choose any of the routes in R_{xy} without considering any information about current network state (i.e., congestion)
 - **Example:** Random over Ring
 - Deterministic are a subset of oblivious
 - **Adaptive:** choose one of the routes in R_{xy} depending on the current network state (i.e., congestion)
 - Example: Adaptive over Ring
 - Congestion Metrics: link availability, buffer occupancy, history of channel load

Destination-Tag Routing in Butterfly Networks (1)

- Destination address directly routes packet
 - Interpreted as an n-digit radix-k number
 - Each digit selects output port at each step
- Example
 - k = 2 (ports per switch)
 - Destination node $5 = 101_2$
 - All switches route out of top if 1, bottom if 0

Minimal and Deterministic 00 20 02 2-ary 3-fly

Destination-Tag Routing in Butterfly Networks (2)

- Routing from 7 to 11
 - k = 4 (ports per switch)
 - Destination node 11 = 1011_2 = 23_4
 - To route to Node 11 use port 2 then 3
- Source does not play any role in routing

Dimension-Ordered Routing (DOR) in a Mesh/Torus

XY Routing: Always go X first, then Y

Cons of this approach?

- Eliminates any path diversity provided by topology
- Poor load balancing

Minimal and Deterministic

Taxonomy of Routing Algorithms

- Classification II: path diversity (how to select between the set of all possible paths R_{xy} from the source x to the dest y)
 - **Deterministic:** always choose the same route between x and y, even if $|R_{xy}| > 1$
 - **Example:** Greedy over Ring
 - Most restrictive but most popular due to ease of implementation and analysis
 - **Oblivious:** choose any of the routes in R_{xy} without considering any information about current network state (i.e., congestion)
 - **Example:** Random over Ring
 - Deterministic are a subset of oblivious
 - **Adaptive:** choose one of the routes in R_{xy} depending on the current network state (i.e., congestion)
 - Example: Adaptive over Ring
 - Congestion Metrics: link availability, buffer occupancy, history of channel load

O1TURN (Seo et al., ISCA 2005)

Randomly send over XY or YX

Minimal and Oblivious

Any problem?

Network Deadlock

- Flow A holds u and wants v
- Flow B holds v and wants w
- Flow C holds w and wants x
- Flow D holds x and wants u

Next lecture!

Valiant's Routing Algorithm

- To route from s to d
 - Randomly choose intermediate node d'
 - Route* from s to d' (Phase I), and d' to d (Phase II)
- Pros
 - Randomizes any traffic pattern
 - All patterns appear uniform random
 - Balances network-load
 - Higher throughput
- Cons
 - Non-minimal
 - Higher latency and energy
 - Destroys locality

Non-Minimal and *Oblivious

*can also be Adaptive

ROMM: Randomized, Oblivious Multi-phase Minimal Routing

- Confine intermediate node to be within minimal quadrant
- Retain locality + some load-balancing
- This approach essentially translates to randomly selecting between all minimal paths from source to destination

Minimal and Oblivious

Valiant's Algorithm on Indirect Networks

Two-phase Valiant routing equivalent to logically duplicating butterfly network

Can eliminate bottlenecks causes by certain traffic patterns. e.g., Traffic = $\{0,1,2,3\} \rightarrow \{0,1,2,3\}$ leads to a channel load of 2 on top half of the links

Non-Minimal and Oblivious

	Max Channel Load	Throughput
Dest = $(0, 1, 2, 3)$	2	0.5
Valiant (Uniform Random)	1	1

Valiant's on our Ring for Tornado?

	Greedy	Random	Adaptive	Valiant's
Max Channel Load	3	5/2 = 2.5	15/8= 1.875	2 (two phases)
Throughput	1/3 = 0.33	2/5 = 0.4	8/15 = 0.53	$1/_{2} = 0.5$

Taxonomy of Routing Algorithms

- Classification II: path diversity (how to select between the set of all possible paths R_{xy} from the source x to the dest y)
 - **Deterministic:** always choose the same route between x and y, even if $|R_{xy}| > 1$
 - **Example:** Greedy over Ring
 - Most restrictive but most popular due to ease of implementation and analysis
 - **Oblivious:** choose any of the routes in R_{xy} without considering any information about current network state (i.e., congestion)
 - **Example:** Random over Ring
 - Deterministic are a subset of oblivious
 - **Adaptive:** choose one of the routes in R_{xy} depending on the current network state (i.e., congestion)
 - Example: Adaptive over Ring
 - Congestion Metrics: link availability, buffer occupancy, history of channel load

Adaptive Routing Algorithms

- Exploits path diversity
- Can be minimal or non-minimal
- Uses network state to make routing decisions
 - Buffer occupancies often used
 - Coupled with flow control mechanism
- Local information readily available
 - Global information more costly to obtain
 - Problems
 - Network state can change rapidly
 - Use of local information can lead to non-optimal choices

Example 1: Minimal Adaptive Routing

Local info can result in sub-optimal choices

Example 2: Non-Minimal Adaptive Routing

Livelock! – continue routing in cycle

Longer path with potentially lower latency

To guarantee forward progress, limit number of misroutings

How to sense congestion?

$5 \rightarrow 6$ and $3 \rightarrow 7$

- **5** \rightarrow **6:** Route counterclockwise (1-hop)
- 3 → 7: Both clockwise and counterclockwise are 4 hops!
 - Which one should 3 choose?
 - Clockwise, since 5 is using all the capacity of link $5 \rightarrow 6$
 - Problem?
 - Queue at node 5 will sense contention. But node 3 will not, and may continue to send counterclockwise
- **Backpressure** allows nodes to indirectly sense congestion
 - Queue in node 5 will fill up and stop receiving flits
 - Previous queues will start filling up
 - If each queue holds 4 packets, node 3 will send 8 packets before sensing congestion
 - More on backpressure later in Flow Control lectures!

Taxonomy of Routing Algorithms

Classification III – implementation

- Source Routing: embed entire route (i.e., list of output ports) in the packet
 - Example: (E, E, N, N, N, N, Eject)
 - Each router reads left most entry, and then strips it away for next hop
 - Pros
 - Save latency at each hop
 - Save routing-hardware at each hop
 - Can reconfigure routes based on faults
 - Supports irregular topologies
 - Cons
 - Overhead to store all routes at NIC
 - Overhead to carry routing bits in every packet (3-bits port x max hops)
 - Cannot adapt based on congestion

Taxonomy of Routing Algorithms

- Classification III implementation
 - **Source Routing:** embed entire route (i.e., list of output ports) in the packet
 - Node-Table Routing: every node has a routing table which stores the output link that a packet from each source should take
 - Combinational Circuits: packet carries only destination coordinates, and each router computes output port based on packet state and router state
 - e.g., deterministic: use remaining hops and direction
 - e.g., oblivious: use remaining hops and direction and some randomness factor
 - e.g., adaptive: use congestion metrics (such as buffer occupancy), history, etc.

That's all for today!

- What will be the combinational circuit / pseudo-code for generating the output_port for the XY routing algorithm in a Mesh at every hop?
 - Use the following signals:
 - From Flit: x_hops_remaining, x_direction,
 y hops remaining, y direction