

ECE4100/ECE6100/CS4290/CS6290 Advanced Computer Architecture Fall 2019

http://tusharkrishna.ece.gatech.edu/teaching/aca_f19/

Lecture 1: Introduction

Tushar Krishna

School of Electrical and Computer Engineering Georgia Institute of Technology

tushar@ece.gatech.edu

Acknowledgment: Lecture slides adapted from MIT EECS 6.823 (Arvind and J. Emer) and GT ECE 4100/6100 (M. Qureshi)

Introductions

Background

- PhD from MIT in EECS (2013)
- Researcher at Intel (2014-15)
- Georgia Tech (2015 present)

Office: Klaus 2318 Office Hours: Tu & Th 4:15 – 5:00 PM after class Fr: By Prior Appointment

Georgia School of Electrical and Tech Computer Engineering

College of Engineering

TUSHAR KRISHNA

Assistant Professor

School of ECE Georgia Institute of Technology Atlanta, GA 30332, USA

EMAIL: <u>tushar@ece.gatech.edu</u> WEB: <u>http://tusharkrishna.ece.gatech.edu</u>

Research Interests

- Computer Architecture
- Interconnection Networks
- Network-on-Chip
- Deep Learning Accelerators

Course Staff

Teaching Assistants (TAs)

- Abhinav Himanshu
- Email: <u>ahimanshu3@gatech.edu</u>
- Office Hours: TBA

Course Information and Updates

4

Course Website for Schedule

http://tusharkrishna.ece.gatech.edu/teaching/aca f19

Canvas

- Announcements
- Lecture notes
- Lab Assignments

Piazza

- Post common questions on Piazza instead of emailing TAs/me.
 - Related to the labs/lectures/homeworks.
- Encouraged for common questions
- Try to answer each other's posted questions, if you can
 - Otherwise TAs and/or I will respond (in some time)

Email

 Me or TAs directly only if you have any question that are not suited for public forum such as Piazza (E.g., why did I get only 20 pts?)

What is Computer Architecture?

5

What is Computer Architecture?

- Wide Dynamic Execution
 - enables the delivery of more instructions per clock cycle
- Hyper-Threading Technology.
 - each core processes two application "threads" simultaneously
- HD Boost.
 - significant gains on the latest SSE4 instruction set.
- Turbo Boost Technology.
 - increases the processor's frequency when needed
- True quad-core
 - enables cores to communicate at die level.
- 8 MB Shared Smart Cache.
 - enabling multiple cores to dynamically share this space
- Smart Memory Access
 - increasing available data bandwidth
- Intelligent Power Capability
 - turning off portions of the processor when they aren't being used

some marketing buzz words

Defining Computer Architecture

7

Computer Architecture is the design of abstraction layers

What do abstraction layers provide?

- Environmental stability within generation
- Environmental stability across generations
- Consistency across a large number of units

What are the consequences?

- Encouragement to create reusable foundations:
 - Tool chains, operating systems, libraries
- Enticement for application innovation

Technology is the dominant factor in computer design

9

Technology ROMs, RAMs VLSI Packaging Low Power

Computers

What about software?

As people write programs and use computers, our understanding of *programming* and *program* behavior improves.

This has profound though slower impact on computer architecture

Modern architects cannot avoid paying attention to software and compilation issues.

Computing devices then...

11

ECE 4100/6100 | Fall 2019 | L01: Intro

Computing devices now

12

Classes of computers

- Embedded
 - Price: \$10 \$100K
 - Constraints: price, energy, application-specific performance
- Mobile (smartphones/tablets)
 - Price: \$100-\$1000
 - Constraints: cost, energy, media performance, responsiveness

Desktop

- Price: \$300-\$2500
- Constraints: price-performance, energy, graphics performance

Server

- Price: \$5000 \$10M
- Constraints: throughput, availability, scalability, energy

Warehouse-scale

- Price: \$100K \$200M
- Constraints: price-performance, throughput, energy

Architecture is engineering design under **constraints**

Factors to consider:

- **Performance** of whole system on target applications
 - Average case & worst case
- Cost of manufacturing chips and supporting system
- Cost to design chips (engineers, computers, CAD tools)
 - Becoming a limiting factor in many situations, fewer unique chips can be justified
- Cost to develop applications and system software
 - Often the dominant constraint for any programmable device
- **Power** to run system
 - Peak power & energy per operation
- Reliability of system
 - Soft errors & hard errors

At different times, and for different applications at the same point in time, the relative balance of these factors can result in widely varying architectural choices

Computer Architecture Today

- "A New Golden Age for Computer Architecture"
 - Hennessey and Patterson, Turing Award Lecture 2019

Challenges

- End of Transistor Scaling
- Slowdown of Single-Thread Performance-scaling
- High energy/power consumption
- Low Reliability of Transistors

Opportunities

- Domain-specific Architectures
- HW-SW Co-Design
- Novel Compute and Memory Technologies

E.g., Computer Architecture for Al 16

The technology stack for artificial intelligence (AI) contains nine layers.

Technology	Stack Definition		Memory		
Services	Solution and use case	Integrated solutions that include training data, models, hardware, and other components (eg, voice-rec- ognition systems)	 Electronic data repository for short-term storage during processing Memory typically consists of DRAM1 		
Training	Data types	Data presented to AI systems for analysis	Starses		
Platform	Methods	Techniques for optimizing weights given to model inputs	 Storage Electronic repository for long-term storage of large data sets Storage typically consists of NAND² Logic Processor optimized to calculate neural network operations, ie, convolution and matrix multiplication Logic devices are typically CPU, GPU, FPGA, and/or ASIC³ Networking Switches, routers, and other equipment used to link servers in the cloud and to connect edge devices 		
	Architecture	Structured approach to extract features from data (eg, convolutional or recurrent neural networks)			
	Algorithm	A set of rules that gradually modifies the weights given to certain model inputs within the neural network during training to optimize inference			
	Framework	Software packages to define architectures and invoke algorithms on the hardware through the interface			
Interface	Interface systems	Systems within framework that determine and facilitate communication pathways between software and underly-ing hardware			
Hardware	Head node	Hardware unit that orchestrates and coordinates compu- tations among accelerators			
	Accelerator	Silicon chip designed to perform highly parallel operations required by AI; also enables simultaneous computations			

Source: McKinsey, "Artificial-intelligence hardware: New opportunities for semiconductor companies"

A journey through this space

- Learn about the evolution of architectures, via historical examples
 - Prehistory: Babbage and Analytic Engine
 - Early days: ENIAC, EDVAC and EDSAC
 - Arrival of IBM 650 and then IBM 360
 - Seymour Cray CDC 6600, Cray 1
 - Microprocessors and PCs
 - Multicores
 - Embedded Processors
 - Custom Hardware (e.g., for AI)
- Focus on ideas, mechanisms and principles, especially those that have withstood the test of time

Syllabus

Module 1: Processors

- Review ISA, Simple Pipelining and Hazards
- Branch Prediction
- Superscalar
- Out of Order Execution
- Speculative Execution

Module 2: Memory

- Review Caches
- DRAM
- Virtual Memory

- Module 3: Multiprocessors
 - Chip Multi-Processors
 - Networks-on-Chip
 - Cache Coherence
 - Memory Consistency
- Module 4: Additional Optimizations
 - Multi-threading
 - Vector machines/GPUs
 - Dataflow architectures/TPU
 - Heterogeneous

Textbook and Readings

- "Computer Architecture: A Quantitative Approach", Hennessy & Patterson, 5th Edition
 - Strongly Recommended (but not necessary)
 - Course website will list H&P reading material for each lecture, and optional readings for more background and in-depth coverage

19

- Prerequisite: ECE 3056 or equivalent
 - Appendix A, B, and C of "Computer Architecture: A Quantitative Approach", H&P, 5th Edition cover required background

Pre-Requisites

- Digital Logic
 - Finite State Machines
 - Combinational Logic vs. Sequential Logic
 - Operation of Muxes, Decoders, Encoders, ...

5-stage Processor Pipeline

RAW, WAR, WAW Hazards

Caches

- Direct-Mapped
- Set-Associative
- Fully-Associative

• We will not be covering these in class.

- If you do not have the right background, make sure you take the prerequisite class first (ECE 3056)
- If you have forgotten these topics, review them from Hennessy & Patterson

Grading

Item	Percentage	
Lab1	5%	
Lab2	10%	
Lab3	10%	
Lab4	10%	
HW1	2%	
HW2	2%	
Participation	1%	
SubTotal	40%	
Midterm1	20%	
Midterm2	20%	
Final Exam	20%	
Total	100%	

Overall grading will be relative. About 50% of you will get an A.

Two Midterms and One Final

Midterms

- Ihr 20 min
- In class, during lecture hours
- Material up to the end of the previous week will be covered
 - Midterm during Week N (Tu/Th) will cover material taught up to Week (N-1)
- Midterm 2 will not cover topics already covered by Midterm 1

Final

- In class during Finals Week
- 2hr 40 min
- Will cover topics from the entire semester

There will be no make up exams!

 Emergency situations with supporting and timely paperwork can be taken up on a case-by-case basis

Four Labs

Lab 1 already posted!

- Based on basic knowledge of instructions and CPI
- Tests ability to work with architecture simulators written in C/C++
- This is a touchstone for your pre-requisite
- Due this Friday at 1pm (so that you can drop the course if you find that you do not have the right background).
- Get started early!
 - You may not have the set up to do the work on the reference machine (ecelinsrv7.ece.gatech.edu)
 - No late submission accepted.

Labs 2 to 4 build a processor and memory system model

- Due on Fridays by 11:55 pm.
 - 3 hour grace period allowed (to account for Canvas issues).
 - One day late submission allowed at the cost of 2 points.
 - Beyond Saturday11:55 pm, no more submissions will be accepted!

Three Homeworks

Homework 0: self test

- Questions covering basics of digital logic and computer architecture.
 Fill a table at the end
 - 0: Never seen this material before
 - 1: Used to know it
 - 2: Know it
- Will not be graded. No need to submit.
- We expect a 2 for all questions
 - Brush up background on topics where you have a zero.
 - If you have 6-7 zeros, talk to the TAs/me.

Homework 1 and 2: problem sets to prepare for midterms

- Due a few days before the midterm
 - You will get 2 points if you submit a reasonably attempted version
 - Solutions will also be posted after the due date
- No late submissions accepted!

Lectures

- Slides will be posted on Canvas a day or two in advance
- For certain topics, supplementary reading materials (recent research papers etc) will also be posted

Recitations

- TAs will hold ONE recitation session every week
 - Cover material complementary to lectures
 - walk-through examples of difficult concepts from lectures
 - review items that lot of students are discussing via Piazza/email
 - review common questions from the Lab assignments
 - model questions to help prepare for midterms and final
 - Make sure you attend recitation before midterms!
 - Topic of recitation will be emailed every week
 - Day, times and venue to be announced soon
- Recitations are optional, but highly useful
 - Individual engagement not possible during lecture
 - Safe space for specific questions and clarifications
 - Test your understanding vis-à-vis your classmates

Office Hours

- TAs will hold 1-hour office hours each every week, in addition to the recitation(s)
 - Use these for specific questions/concerns about the lectures or labs
- I will hold office hours after every class
 - Send me an email to setup an additional meeting time if required

Schedule (tentative)

Week	Dates	Tuesday	Thursday	Due Dates [Fri]
1	(Aug 20 -)			Lab #1 Due
2	(Aug 27 -)			
3	(Sep 3 -)			
4	(Sep 10 -)			
5	(Sep 17 -)			HW#1 Due, Lab #2 Due
6	(Sep 24 -)		Midterm 1	
7	(Oct 1 -)			
8	(Oct 8 -)			
9	(Oct 15 -)	Fall Recess		
10	(Oct 22 -)			Lab #3 Due
11	(Oct 29 -)	Midterm 2		HW#2 Due
12	(Nov 5 -)			
13	(Nov 12 -)			
14	(Nov 19 -)		Thanksgiving	
15	(Nov 26 -)			Lab#4 Due
16	(Dec 3 -)			
17	(Dec 10 -)	Final		

Warning!!

29

- This course requires heavy programming
- Don't take too many program/project heavy courses together!
- It is a 3-credit course but will feel like a 4-5 credit course
- The most ECE-like course in CS, the most CS-like course in ECE

Zero tolerance for cheating

- ALL lab assignments are individual
 - You can discuss ideas with other students
 - You CANNOT see (or show) other students code
 - We use MOSS to detect cases of substantial overlap <u>http://theory.stanford.edu/~aiken/moss/</u>
- Zero tolerance towards violation of the GT honor code
 - If you are caught cheating: Zero on lab assignment + One grade drop + Report to dean (academic warning in file)

What is expected from you?

- Required background
 - Basic computer architecture (ECE 3056 or equivalent)
 - Basic programming (C/C++)
- Learn the material, understand it and analyze it
- Do the work & work hard
- Do the lab programming assignments
- Ask questions, take notes, participate: If we are not discussing, then one way lecture will be boring (for both you and me)
- We will have a "No Open Screens" policy in this class

"Electronic Etiquette Policy"

- No open Laptops, Tablets, Phone etc. in lectures!
 - Several studies [Princeton and U California] show Open Laptops are a hindrance to classroom learning: test scores of students with open Laptop substantially lower than the students with closed screens

http://www.newyorker.com/tech/elements/the-case-for-banning-laptops-in-the-classroom (6/6/2014)

The open screens affect

- You (hard to be a part of the discussion if your attention is on your screen)
- Your fellow students (who may get distracted by your videos of cute kittens)
- Professor (more motivated if students are paying attention)
- If your screens/texting causes trouble for other students in class, I may have to ask you to leave and return after taking care of what you need to

What is the difference between ECE 4100 and ECE 6100?

33

The Lecture material remains the same

- The Lab assignments (Lab2 Lab4) for the undergraduate section (4100) will have reduced requirements
 - Extra credit for doing the ECE6100 version of the assignments

• The midterm will be the same for both ECE4100 and ECE6100

What is the difference between sections A and B?

- Sections A and B are both cross-listed as ECE4100/ECE6100/ CS4290/CS6290
- Both sections will cover the same material by the end
 - Individual lectures may be different
 - The way we cover the material will be different
 - The digressions based on student questions will be different
 - The labs will be different
 - The midterm/final exams will be different
- You are welcome to attend both sections if you like to reinforce the material
- However, you are responsible for taking the midterm and final for your own section → Section B in our case

35

Lectures

Recitations

ſ

Piazza

ſ

Instructor Office Hours

Most of you can get an A in this class.

Next Few Lectures

- History of Computers!
 - Difference Engine \rightarrow ENIAC \rightarrow IBM 360 \rightarrow Modern ISAs
- Implementing an ISA
 - Non-pipelined
 - Pipelined
 - Hazards
- Extracting Instruction Level Parallelism (ILP)
 - Branch Prediction
 - Out of Order Execution
 - Speculative Execution

Takeaways from this class

The processor you built in ECE3056/equivalent

What you'll understand and can design after ECE6100

Die Photo of Intel Skylake, 2015

See you on Thursday!

37