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§ Topology
§ How to connect the nodes
§ ~Road Network

§ Routing
§ Which path should a message take
§ ~Series of road segments from source to destination

§ Flow Control
§ When does the message have to stop/proceed
§ ~Traffic signals at end of each road segment

§ Router Microarchitecture
§ How to build the routers
§ ~Design of traffic intersection (number of lanes, algorithm 

for turning red/green)
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§ Classification I: path length
§ Minimal: shortest paths

§ Example: Greedy over Ring, XY over Mesh

§ Non-minimal: non-shortest paths
§ Example: Random and Adaptive over Ring/Mesh
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§ Classification II: path diversity (how to select between the 
set of all possible paths Rxy from the source x to the dest y)
§ Deterministic: always choose the same route between x and y, 

even if |Rxy| > 1
§ Example: Greedy over Ring, XY over Mesh
§ + Easy to Implement
§ - Inefficient use of bandwidth

§ Oblivious: choose any of the routes in Rxy without considering any 
information about current network state (i.e., congestion)
§ Example: Random over Ring, O1Turn over Mesh
§ + More path diversity
§ - Can lead to deadlocks (this lecture)

§ Adaptive: choose one of the routes in Rxy depending on the current 
network state (i.e., congestion)
§ Example: Adaptive over Ring/Mesh
§ + Best use of available bandwidth
§ - Need to track congestion, can lead to deadlocks
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§ A condition in which a set of agents wait indefinitely 
trying to acquire a set of resources

§ Packet A holds buffer u (in 1) and wants buffer v (in 2)
§ Packet B holds buffer v (in 2) and wants buffer w (in 3)
§ Packet C holds buffer w (in 3) and wants buffer x (in 0)
§ Packet D holds buffer x (in 0) and wants buffer u (in 1)
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Note: holding buffer u 
== holding Channel 01
as no other packet can 
use channel 01 till 
buffer u becomes free
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Agents: 
Philosophers

Resources: 
Forks
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§ Agents hold and do not release a resource while 
waiting for access to another

§ A cycle exists between waiting agents such that there 
exists a set of agents A0, .. An-1, where agent Ai holds 
resource Ri, while waiting on resource R(i+i mod n), for i
= 0, …, n-1

§ To avoid deadlock – resource dependence graph 
should not have any cycles
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§ Proactive / Avoidance
§ Guarantee that the network will never deadlock
§ Almost all modern networks use deadlock avoidance

§ Reactive / Recovery
§ Detect deadlock and correct

§ Subactive
§ Introduce periodic forced movement among packets
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§Eliminate cycles in Resource Dependency 
Graph
§ Resource Ordering

§ Enforce a partial/total order on the resources, and insist 
that an agent acquire the resources in ascending order

§ Deadlock avoided since a cycle must contain at least one 
agent holding a higher numbered resource waiting for a 
lower-numbered resource which is not allowed by the 
ordering allocation

§ Implementation
§ Restrict certain routes so that a higher numbered resource 

cannot wait for a lower numbered resource
§ Partition the buffers at each node such that they belong to 

different resource classes. A packet on any route can only 
acquire buffers in ascending order of resource class
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§Deadlocks may occur if the turns taken form a 
cycle
§ Removing some turns can make the routing algorithm 

deadlock free
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XY Model YX Model

O1Turn Deadlock!
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West-First Turn Model North-Last Turn Model

Negative-First Turn Model
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Six turn model

Deadlock!
Total Turn Models = 16
Deadlock Free = 12
Unique (non-symmetrical) = 3



§ Vertices represent network links (channels)

§ Edges represent turns
§ 180o turns not allowed, e.g., AB à BA
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The channel dependency graph D derived  from the network 
topology may contain many cycles

F

A B

E D

C

Flow routed through links AB, BE, EF
Flow routed through links EF, FA, AB
Deadlock!
Edges in CDG = Turns in Network
è Disallow/Delete certain edges in CDG
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This is the 
West-first turn model!
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Suppose: Diagonal links 
should be traversed last 
(i.e., no edge from 
blue/green channel to 
black)
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Suppose: Diagonal links 
should be traversed last 
(i.e., no edge from 
blue/green channel to 
black) Deadlock free?

Yes
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Option 1

Problem?

Route from E to C disabled
(E to D) and (D to C) allowed 

Route from F to B disabled

No route from E/F to B/C

CDG
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Option 2

Problem?

Route from E to C disabled
(E to D) and (D to C) allowed 

Route from E to A disabled

No route from E to A/B/C

CDG
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Option 3

Problem?

Route from E to C disabled
(E to D) and (D to C) allowed 

Route from B to D disabled

Acceptable CDG
E to C no longer minimal

CDG
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G, H, I have to take non-minimal paths 
to reach E!

D, C, B have to take non-minimal paths 
to reach F

Problem?
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§Eliminate cycles in Resource Dependency Graph
§ Resource Ordering

§ Enforce a partial/total order on the resources, and insist that an 
agent acquire the resources in ascending order

§ Deadlock avoided since a cycle must contain at least one agent 
holding a higher numbered resource waiting for a lower-
numbered resource which is not allowed by the ordering 
allocation

§ Implementation
§ Restrict certain routes so that a higher numbered resource cannot 

wait for a lower numbered resource
§ Partition the buffers at each node such that they belong to 

different resource classes. A packet only any route can only 
acquire buffers in ascending order of resource class
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§ Ring
§ Use VC from class 0 before dateline
§ Use VC from class 1 after dateline

§ Fully-Oblivious (e.g., O1turn)
§ Use VC 0 for XY, VC 1 for YX

§ Fully-Adaptive Routing (no turns restricted)
§ Use VC from class 0 before turning
§ Use VC from class 1 after turning

§ Valiant’s Routing Algorithm
§ DOR over VC in class 0 from source till intermediate
§ DOR over VC in class 1 from intermediate to destination
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Problem?Ring with Dateline

Mesh with O1Turn

VC from Class 1 never used!

Packet on Ring never crosses dateline
Packet on Mesh does not make any turns

Class 0

Class 1

Solution: Overlapping Resource Classes

Class 0
Class 1

As long at least one 
buffer per class, 
can guarantee 
deadlock freedom 



§ So far, we said deadlock is avoided if cycles eliminated 
in Channel Dependence Graph
§ Remove cycles via turn restriction
§ Convert cyclic CDG into a spiral using VCs

§ Called extended CDG
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§ So far, we said deadlock is avoided if cycles eliminated 
in Channel Dependence Graph
§ Remove cycles via turn restriction
§ Convert cyclic CDG into a spiral using VCs

§ Called extended CDG

§ However, it is possible for a (extended) CDG to have 
cycles and still be deadlock-free (Duato*, 1993)
§ As long as the cycle connects to some sub-graph within the 

(extended) CDG that is acyclic
§ Known as the escape path or escape VC
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*José Duato. A new theory of deadlock-free adaptive routing in wormhole networks.
IEEE Transactions on Parallel and Distributed Systems, 4(12):1320–1331, December 1993.
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§ Intuitively, at least one packet in the cycle has an 
option to take an acyclic route
§ Packets should not wait on any specific channel
§ If allocation is fair, escape VCs guaranteed to show up 

eventually

§Use of escape channels by a message is not 
unidirectional
§ If a message enters the escape network it can move 

back to the adaptive network, and vice versa, if 
minimal* routes
§ *for non-minimal routes, message has to continue on escape 

VC once it gets in, without going back to the adaptive VCs
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§Consider a 2D Mesh with 8 VCs and minimal 
routing
§ VC 1-7 can use any arbitrary minimal routing

§ Cyclic CDG

§ VC 0 (escape VC) is restricted to DOR (provides 
escape path)
§ Acyclic CDG

§ As long as a packet can allocate all VCs fairly, 
there will always be an escape path available in 
case the network deadlocks
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Escape VC

West-first

Regular VCs

Deadlock-free 
escape path



§ The escape VC should 
always makes forward 
progress!
§ A flit that is going NW or SW 

should never enter a router from 
the S or N port in escape VC, 
else SàW or NàW turn is 
inevitable
§ How to guarantee this?

§ When selecting VC at previous 
router

§ Lab 3!
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VC 1 
(escape VC)
West-first

VC 0 
(regular VC)

X
?

Ejection 
not shown



§Eliminate cycles in Channel Dependency Graph
§ Routing Restrictions (e.g., Turn Model in Mesh)

§ Acyclic CDG

§ Buffer Assignment
§ Acquire new VC every time a “cyclic turn” is made

§ e.g., Dateline in Ring, XY in VC 0, YX in VC 1 in Mesh, …
§ Acyclic Extended CDG

§ Escape VCs
§ Cyclic CDG (regular VC) + Acyclic sub-graph (Escape VC)

§Can we avoid deadlocks even if CDG is cyclic?
§ What if we guarantee that a dependence cycle will 

never get created at runtime by clever flow-control?
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Ring Traversal Rule: 
traverse if one bubble free

V. Puente et al. The adaptive 
bubble router. Journal of Parallel 
and Distributed Computing, 2001.
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Ring Traversal Rule: 
traverse if one bubble free

F

A B

E D

C
V. Puente et al. The adaptive 
bubble router. Journal of Parallel 
and Distributed Computing, 2001.

Should it inject?
BFC Injection Rule:
only inject if 2 bubbles free.
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Ring Traversal Rule: 
traverse if one bubble free

F

A B

E D

C

BFC Injection Rule:
only inject if 2 bubbles free.

V. Puente et al. The adaptive 
bubble router. Journal of Parallel 
and Distributed Computing, 2001.

Problem?
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Ring Traversal Rule: 
traverse if one bubble free

BFC Injection Rule:
only inject if 2 bubbles free.

V. Puente et al. The adaptive 
bubble router. Journal of Parallel 
and Distributed Computing, 2001.

F

A B

E D

C

Not allowed to inject!
Even though no 
deadlock
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Ring Traversal Rule: 
traverse if one bubble free

CBFC Injection Rule:
only inject if not critical 
bubble.

F

A B

E D

C

Allowed to inject!

L. Chen et al., “Critical Bubble 
Scheme: An Efficient Implementation
of Globally Aware Network Flow 
Control,” IPDPS 2011

Critical 
Bubble
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Ring Traversal Rule: 
traverse if one bubble free

CBFC Injection Rule:
only inject if not critical 
bubble.

F

A B

E D

C
L. Chen et al., “Critical Bubble 
Scheme: An Efficient Implementation
of Globally Aware Network Flow 
Control,” IPDPS 2011

Critical 
Bubble

How does critical bubble move?
If flit moves into critical bubble, its own 
buffer becomes new critical bubble



§ Proactive / Avoidance
§ Guarantee that the network will never deadlock
§ Almost all modern networks use deadlock avoidance

§ Reactive / Recovery
§ Detect deadlock and correct

§ Subactive
§ Introduce periodic forced movement among packets
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1 VC

4 VCs

1 VC

4 VCs

1 VC

4 VCs

1 VC

4 VCs

1 VC

4 VCs

0 1 2 4 8 16 20 24

Blackscholes

Bodytrack

Canneal

F’animate

Swaptions

number of links removed

Deadlock probability
0% 20% 40% 60% 80% 100%Minimum injection rate (flits/node/cycle) at which 64-core Mesh 

and 1024-node Dragon-fly deadlock with different traffic patterns in 
100K cycles with 3 VCs per port and 1-flit packets 

Deadlocks are rare!

But -- Need a solution for functional correctness!



§Performance
§ due to Routing Restrictions in all VCs / subset of 

VCs

§Area/Power
§ Need additional Virtual Channels (buffers) to 

compensate

Jan 27-29, 2020ICN | Spring 2020 | M04: Deadlocks                    © Tushar Krishna, School of ECE, Georgia Tech 

51



§Two phases
§ Detection: 

§ E.g., timeouts attached with each resource
§ Can lead to false positives

§ Recovery:
§ Regressive – remove packets/connections that are deadlocked

§ E.g., drop packets after timeout
§ Progressive – recover without removing packets/connections

§ E.g. shared escape buffer to drain deadlocked packets
§ DISHA [ISCA 95], Static Bubble [HPCA 2017]

§ Coordinated Movement
§ SPIN [ISCA 2018]
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§ Use counters.

§ Placed at every node at design time.
§ Can be optimized further by exploiting topology symmetry 

(Static Bubble [HPCA 2017])

§ If packet does not leave in threshold time 
(configurable), it indicates a potential deadlock. 
§ Counter expired à Send probe to verify deadlock.
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Expires at 
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Probe

Send 
Probe

Probe Returns: 
Deadlock 

Confirmed



§ Probe is a special message that tracks the buffer dependency.

§ Probe Traversal Mechanism
§ Drop Probe

§ If input port has at least one free VC
§ If input port has at least one VC pointing to ejection port

§ Ejection port guaranteed to eventually eject packet
§ Known as “Consumption Assumption”

§ Fork Probe
§ If none of the drop conditions are met
§ Fork probe out of all output ports that VCs at the input port are waiting on

§ If Probe returns to sender:
§ Cyclic buffer dependence, hence deadlock.

§ There may be false positives

§ Next, send other special messages to handle recovery
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Static Bubble: A Framework for Deadlock-free Irregular On-chip Topologies
Aniruddh Ramrakhyani and Tushar Krishna
In Proc of the 23rd IEEE International Symposium on High-Performance Computer 
Architecture (HPCA), Feb 2017



§ Place static bubbles at design time to guarantee deadlock-
freedom for any irregular runtime topology.
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Static Bubble Node : 
contains one Static Bubble.

Algorithm Guarantee: Every possible cycle in mesh will have at 
least one Static Bubble. 



STATIC BUBBLE
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STATIC BUBBLE
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STATIC BUBBLE
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STATIC BUBBLE
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STATIC BUBBLE
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Static Bubble

D
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STATIC BUBBLE
63
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D

Exit the 
deadlocked 
loop
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STATIC BUBBLE
64

A
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E

D

Switch off !!
Deadlock  Resolved !!
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Underlying 
Mechanism: 
Bubble Flow 
Control!
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Synchronized Progress in Interconnection Networks (SPIN) : A New Theory for 
Deadlock Freedom
Aniruddh Ramrakhyani, Paul Gratz, and Tushar Krishna
In Proc of 45th International Symposium on Computer Architecture (ISCA), Jun 2018
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Probe

Probe Returns: 
Deadlock 

Confirmed
1. Deadlock 

Detection

2. Coordinating 
the spin.

3. Executing 
the spin.



A

C D

B
E

F

Move

Send 
Move

Set counter to 
count to spin 

cycle

Move 
returns

1. Deadlock 
Detection

2. Coordinating 
the spin.

3. Executing 
the spin.
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C D

B
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F

Counters 
expire together 

in the spin 
cycle

1. Deadlock 
Detection

2. Coordinating 
the spin.

3. Executing 
the spin.
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A

C

D

B

EF1. Deadlock 
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§Resolving a deadlock may require multiple 
spins

§ After spin, router can resume normal operation. 

§ Counter expires again, process repeated.

§Optimization: send probe_move after spin is     
complete.

§ probe_move checks if deadlock still exists and if so, 
sets the time for the next spin.

§Details in paper (Sec. IV-B).
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§ Proactive / Avoidance
§ Guarantee that the network will never deadlock
§ Almost all modern networks use deadlock avoidance

§ Reactive / Recovery
§ Detect deadlock and correct

§ Subactive
§ Introduce periodic forced movement among packets
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Brownian Bubble Router (NOCS 2018), BINDU (NOCS 2019), 
SWAP (MICRO 2019), DRAIN (HPCA 2020) à Next Lecture
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Cache / Directory can process a request only if there 
is space in its output queue to send a response

Need separate Virtual Channels* for requests and responses
(called Virtual Networks) 

Responses should always be drained  (“consumption assumption”)

Deadlock, even though network is deadlock-free


