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Abstract

Specifying a prior distribution for the large number of parameters in the statistical

model is a critical step in a Bayesian approach to the design and analysis of experiments.

This article shows that the prior distribution can be induced from a functional prior

on the underlying transfer function. The functional prior requires the specification of

only a few hyper-parameters and therefore, can be easily implemented in practice. The

usefulness of the approach is demonstrated through the analysis of some experiments.

The article also proposes a new class of design criteria and establishes their connections

with the minimum aberration criterion.
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1. INTRODUCTION

Suppose an experimenter wishes to perform an experiment with p factors each at two levels.

Then, there are a total of 2p experiments, which can be prohibitively large to conduct due

to the huge cost and time involved in the experiment even with a moderately large p, say 4

to 10. In fact, it is very common to have more than 10 factors in industrial experiments . In

such cases, the only option one has is to perform a fraction of the full factorial experiments

(for real examples, see, Taguchi 1987, Wu and Hamada 2000, and Montgomery 2004).

Using a 2p full factorial experiment one can estimate, all the main effects, 2-factor in-

teractions (2fi),..., p-factor interaction (pfi). There are a total of 2p effects including the

mean. Suppose the experimenter performed n experiments, where n < 2p, then one can only

estimate n aliases of the 2p effects, at least in the frequentist sense. For example, consider

a 23−1
III experiment with three factors A, B, and C. If the design generator is C = AB, then

from this experiment, only the four aliases I = ABC,A = BC, B = AC, and C = AB can be

estimated. Now to make conclusions, some empirical principles such as the effect hierarchy

principle (see, e.g, Hamada and Wu 1992) are invoked into the data analysis. The effect hi-

erarchy principle states that lower order effects are more important than higher order effects;

and the effects of the same order are equally important. Thus some lower order effects are

estimated by assuming the higher order effects to be negligible. In the above example, we

may thus estimate the intercept and the three main effects by assuming the 2fis and 3fi to be

negligible. When ambiguity about the effects are still unresolved, follow-up experiments such

as using a fold-over deign etc. are recommended in the literature (see, e.g, Meyer, Steinberg,

and Box 1996). Note that the estimation is difficult because we have a higher number of

parameters (2p) to estimate than the size of the data (n). Although the above estimation

problem can be avoided using Bayesian methods, the conclusions will depend on the prior

distribution for the parameters as well as the information in the experiment. If the prior is

incorrect or the information is insufficient, then the conclusions can go wrong. Nevertheless,

the Bayesian approach gives a nice framework for analyzing fractionated experiments, the

potential of which does not seem to have been fully exploited in the literature.
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A review on Bayesian experimental design was given by Chaloner and Verdinelli (1995).

One of the difficulties associated with the Bayesian approach is in the specification of the

prior distribution. For example, consider a 10-factor experiment. Suppose we decided to use

a multivariate normal distribution for the parameters, then we need to specify 210 = 1024

mean hyper-parameters and 1024× 1025/2 = 524800 variance-covariance hyper-parameters.

This is definitely a challenging task. Although some simplifying assumptions are made

in the literature for practical implementation, they are mostly done in a subjective way.

Interestingly, the approach in computer experiments is different and does not have the above

problem. The idea was to use a functional prior on the underlying transfer function (see, e.g,

Currin et al. 1991). But since interpolating functions are desirable in computer experiments,

kriging models are preferred instead of the linear models. In this article we will show that by

imposing such a functional prior on the transfer function, we can induce a prior distribution

for the parameters in the linear model. The functional prior requires the specification of only

a few hyper-parameters and therefore it avoids the difficulty of huge prior specification. This

is the crucial idea behind this article. The use of linear models makes this work different from

that of computer experiments. Mitchell, Morris, and Ylvisaker (1995) has studied stationary

processes over the factorial points in a 2-level design (see also a follow-up work by Kerr 2001).

Their work focuses on some of the properties of the prior processes and related design issues,

whereas we use it as a tool to avoid the estimation problems in fractionated experiments. We

also provide a general framework for developing the prior distribution in experiments with

any number of levels. It is important to mention some of the other Bayesian work in the

literature such as that of Box and Meyer (1993), Chipman, Hamada, and Wu (1997), and

Chipman (1998). Apart from the prior specification for the model parameters, their work

differs on another aspect. They use a hierarchical Bayesian model with a prior on the model

space, which helps in identifying the best subset model that fits the data well. In this work,

we do not use such a prior. Instead, a Bayesian version of the forward selection strategy is

proposed to identify the best model. This strategy may not do an exhaustive search in the

model space, but is computationally easier to implement.

An important problem for the experimenter is the designing of the experiment, i.e. choos-
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ing n runs from the set of 2p runs. Finding the “best” possible design is a very complicated

combinatorial optimization problem, but some simple techniques are proposed for designs

such as 2p−k fractional factorial designs. One can write down the wordlength pattern of a de-

sign (Wu and Hamada 2000) and use criteria such as maximum resolution (Box and Hunter

1961) or minimum aberration (Fries and Hunter 1980) for selecting the best design. Mini-

mum aberration (MA) is probably the most popular criterion for design selection because of

its many desirable properties. See, for examples, Chen (1992), Cheng and Mukerjee (1998)

and Cheng, Steinberg, and Sun (1999). The above two criteria are strictly based on the

hierarchy principle and there are many problems associated with it. For example, consider

the two 29−4
IV designs given in Wu and Hamada (2000, Appendix 4A). Their word length

patterns are W (D1) = (0, 0, 0, 6, 8, 0, 0, 1, 0) and W (D2) = (0, 0, 0, 7, 7, 0, 0, 0, 1). According

to MA criterion D1 is better because it has one lower 4-letter word than D2. But note that

D2 has one less 5-letter word and no 8-letter word. Therefore should we prefer D2 to D1?

According to another popular criterion known as maximum number of clear 2fis (MaxC2),

D2 is better than D1 (Wu and Wu 2002). There is no general consensus among researchers

on which criterion is the best. This article proposes a new class of criteria based on the

Bayesian A-optimal criterion, a special case of which is equivalent to a weighted average of

the word length pattern. This connection of Bayesian designs with MA designs will surely

appeal to the frequentists. Moreover, the proposed criterion can also be used for evaluating

any type of designs including nonregular designs (designs that do not have a defining contrast

subgroup).

The article is organized as follows. In Section 2, a general methodology for developing

a prior distribution for the model parameters is proposed. The estimation of the model

parameters and the hyper-parameters is discussed in Section 3. A Bayesian version of the

forward selection strategy is proposed in Section 4. The new approach is illustrated using

two experiments in Section 5. The optimal design for the 2-level experiments is discussed in

Section 6 and some concluding remarks and future research directions are given in Section

7.
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2. PRIOR DISTRIBUTION

In this section we will propose a methodology for developing a prior distribution for the

parameters in a linear model. The results will then be simplified for the case of two-level

experiments.

2.1 General Methodology

Let Y be the response and {x1, · · · , xp} the set of factors. The factor xi takes mi values

(levels) in the experiment and let X denotes the experimental region containing all the level

combinations of the p factors. The experimental design is a subset of X . For example,

if the levels of xi are 1, 2, · · · ,mi, then the experimental design is a set of points in X =

{1, 2, · · · ,m1} × · · · × {1, 2, · · · ,mp}. We assume that Y = f(x) + e, where e is the error

caused by the unobserved noise factors and measurement noise. Assume e ∼ N(0, σ2). The

true transfer function f is unknown to the experimenter and can be highly nonlinear. We will

put a prior on this function. Let f be a realization from a Gaussian process (GP) with mean

µ0 and covariance function σ2
0ψ. The covariance function is defined as cov{f(x1), f(x2)} =

σ2
0ψ(x1,x2), where x1 and x2 are any two points in the experimental region. The covariance

function must be a positive semi-definite function with ψ(x,x) = 1. Such functional priors

using GPs are widely used in the modeling of deterministic functions (see, e.g, Santner,

Williams, and Notz 2003). Thus we have the model

Y = f(x) + e, e ∼ N(0, σ2), f(x) ∼ GP (µ0, σ
2
0ψ). (1)

It is possible to use a more elaborate mean function than a constant µ0. This will be

introduced in a later section to facilitate variable selection.

Product correlation functions are by far the most commonly used type of correlation

functions (Currin et al. 1991). It is given by

ψ(x1,x2) =
p∏

i=1

ψi(x1i, x2i), (2)

where xj = (xj1, · · · , xjp)
′ for j = 1, 2. We assume ψi(x1i, x2i) ∈ [0, 1] for all i, which is

satisfied for all the correlation functions used in computer experiments. The most popular
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choice is the exponential correlation function given by ψi(x1i, x2i) = exp(−θi|x1i − x2i|αi),

where 0 < αi ≤ 2 and 0 < θi < ∞ for all i. This correlation function is appropriate

for a quantitative factor. Qualitative factors such as different types of machines, methods,

etc. also arise in experiments. It is not meaningful to consider the transfer function to be

a realization from a continuous stochastic process in the space of the qualitative factors.

But fortunately we only need its distribution over some points in X and therefore discrete

factors can also be included into the above setup. For qualitative factors we may have to

assign equal correlation between any two levels, whereas for the quantitative factors it can

be a decreasing function of the distance between the levels. Note that the existing factorial

design theory treats all the factors as qualitative, which is one of its drawbacks (Cheng and

Ye 2004).

We will approximate f(x) with a linear model. Each variable xi can be represented using

mi−1 dummy variables. Let z1, · · · , zm1−1 be the dummy variables for x1; zm1 , · · · , zm1+m2−2

the dummy variables for x2; · · ·; and zm1+···+mp−1−p+2, · · · , zm1+···+mp−p the dummy variables

for xp. There are many coding systems that are popular in regression analysis for defining the

dummy variables such as orthogonal polynomial coding, Helmert coding, treatment coding,

etc. We may select a coding system to get a nice interpretation for the parameters. Now de-

fine the variables in the full linear model as follows. Let u0 = 1, u1 = z1, · · · , um1+···+mp−p+1 =

z1zm1 , · · · , uq−1 = zm1 · · · zm1+···+mp−p, where q = m1m2 · · ·mp. Note that we do not need

the interactions among the dummy variables within an x variable. For example, consider an

experiment with two factors each at three levels denoted by 1, 2, and 3. Using orthogonal

polynomial coding (Wu and Hamada 2000, chapter 2)

z1 = x1 − 2, z2 = 3(x1 − 2)2 − 2, z3 = x2 − 2, and z4 = 3(x2 − 2)2 − 2.

Now u1 = z1, u2 = z2, u3 = z3, u4 = z4, u5 = z1z3, u6 = z1z4, u7 = z2z3, and u8 = z2z4. These

eight variables correspond to the linear main effect of x1, quadratic main effect of x1, · · ·,
quadratic × quadratic interaction effect of x1 and x2 respectively.

Let f(x) = µ0 +
∑q−1

i=0 βiui + δ(x). Because the f values can be exactly reproduced by
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µ0 +
∑q−1

i=0 βiui in X , set δ(x) = 0 for x ∈ X . Thus we have

f(x) = µ0 +
q−1∑

i=0

βiui, x ∈ X . (3)

A full factorial design consists of all the points in X . Based on the values taken by each

factor in the full factorial design, we can compute the values of u0, u1, · · · , uq−1. Denote this

q× q matrix by Up. We have, f = µ01+ Upβ, where f denotes the vector of function values

for the full factorial design, β = (β0, · · · , βq−1)
′, and 1 is a column of 1’s. Note that f has

a multivariate normal distribution with E(f) = µ01 and var(f) = σ2
0Ψp, where Ψp is the

correlation matrix for the points in the full factorial design. Using this we can induce a prior

distribution for all the q parameters in the model. We obtain E(β) = E{U−1
p (f −µ01)} = 0

and var(β) = var{U−1
p (f−µ01)} = σ2

0U
−1
p Ψp(U

−1
p )′, where 0 is a column of 0’s. In addition,

β has a multivariate normal distribution. Thus we have the following result.

Theorem 1: Under (1) and (3),

β ∼ N
(
0, σ2

0U
−1
p Ψp(U

−1
p )′

)
.

The above prior is different from that used in the literature on Bayesian linear models

(see, e.g, Chipman, George, and McCulloch 2001). In the literature, the variance-covariance

matrix is given by τ 2Σ, where τ 2 is a constant and Σ is usually taken as either Iq or (U ′
DUD)−1.

Here Iq is the q-dimensional identity matrix and UD is the model matrix corresponding to

the experimental design. The second choice for Σ can not be used in our problem because

in fractionated experiments the number of rows in UD is less than q and therefore (U ′
DUD)−1

does not exist. The first choice of Iq assigns equal variances to all effects, which may not

always be good as we show in the next section.

The result of Theorem 1 is general and can be used for any type of factors with any num-

ber of levels. But as the number of factors and/or levels increase, the variance-covariance

matrix becomes huge and difficult to handle. Therefore some simplifications are essential for

its practical implementation. We will now simplify the result for the case of factors experi-

mented at two levels.
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2.2 Two-Level Experiments

Consider the case of a 2-level experiment where the two levels are coded as −1 and +1.

The rest of the article concentrates on 2-level experiments. Details of three and higher level

experiments will appear elsewhere. Here X = {−1, 1}p. For two levels, we do not need

any dummy variables. Therefore, let u0 = 1, u1 = x1, · · ·, up = xp, up+1 = x1x2, · · ·, and

u2p−1 = x1x2 · · · xp. Thus the linear model we would like to fit is Y = µ0 +
∑2p−1

i=0 βiui + e,

where β1, · · · , βp are the main effects, βp+1, · · · , βp+(p
2) the 2fis, · · ·, and β2p−1 the pfi. We

will obtain a prior distribution for these 2p parameters using Theorem 1. Assume the prior

process in (1) to be stationary for all p. Then, for the product correlation function in (2),

ψi(x1i, x2i) depends only on |x1i − x2i|. Also, in most practical cases we will take all the

ψi’s to be the same, say ψ0. Therefore, let ψi(x1i, x2i) = ψ0(|x1i − x2i|). Thus, consider the

correlation function of the form

ψ(x1,x2) =
p∏

i=1

ψ0(|x1i − x2i|). (4)

Let

r =
1− ψ0(2)

1 + ψ0(2)
and τ 2 =

σ2
0

(1 + r)p
.

Then, we have the following result. The proof is given in the Appendix.

Proposition 1. For 2-level experiments with the correlation function in (4),

β0 ∼ N(0, τ 2)

βi ∼ N(0, τ 2r), i = 1, · · · , p
βi ∼ N(0, τ 2r2), i = p + 1, · · · , p + (p

2)

...

β2p−1 ∼ N(0, τ 2rp),

and they are independent.

Note that the main effects, 2fis, · · ·, pfi are independent and their variances decrease

geometrically at a rate r. The above result can be deduced from a more general result ob-

tained by Mitchell, Morris, and Ylvisaker (1995), but unlike here their motivation was not
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to develop a prior distribution to facilitate Bayesian estimation in fractionated experiments.

Moreover, the description and proof given here based on linear model theory are more trans-

parent and straightforward. The importance of this result is that we need to specify only

two hyper-parameters τ 2 and r for obtaining the prior distribution of 2p parameters. The

result also gives a justification for the effect hierarchy principle, which is fundamental to the

frequentist analysis. Since 0 ≤ r ≤ 1, the variance of a lower order effect is more than that

of a higher order effect, and therefore it is more probable to be of larger magnitude than the

higher order effect, thus justifying the hierarchy principle.

The result in Proposition 1 can be generalized using the more general product correlation

function given in (2). Under the stationary assumption, the only change will be in the

variance structure. Let ψi(x1i, x2i) = ψi(|x1i − x2i|), ri = {1 − ψi(2)}/{1 + ψi(2)} for

i = 1, · · · , p, and τ 2 = σ2
0{

∏p
i=1(1 + ri)}−1. Let βij denote the 2fi between factors i and j,

· · ·, and β12···p the pfi. Then,

var(β0) = τ 2, var(βi) = τ 2ri, var(βij) = τ 2rirj, · · · , var(β12···p) = τ 2
p∏

k=1

rk.

This result is useful if we know some effects are more important than others. If a particular

main effect is considered to be more important, say for the ith factor, then it should be

assigned a higher value of ri relative to the others. Note that this will make all the interaction

effects involving this factor to be more important. This can be considered a weak justification

to the effect heredity principle proposed in Hamada and Wu (1992) and used by Chipman,

Hamada, and Wu (1997) (Effect heredity principle states that the chances of an interaction

effect being important is less if none of its parent effects are important). For simplicity, the

rest of the article focuses on the case of equal ri’s, which can easily be extended to deal with

unequal ri’s.

3. ESTIMATION

Let D be the design matrix, which has n rows and p columns corresponding to the

p experimental factors. Let y = (y1, · · · , yn)′ be the response values obtained from the

experiment. For the moment, assume that we have an unreplicated experiment. Therefore
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the rows of D are unique. We want to fit the model Y = µ0 + u′β + e, where e ∼ N(0, σ2),

u = (u0, u1, · · · , u2p−1)
′ and β = (β0, β1, · · · , β2p−1)

′. Assume that the e’s are independent

and σ2 is known. Let UD be the model matrix generated from D, i.e., UD is an n×2p matrix

in which the rows correspond to the rows of D and columns correspond to the u variables.

Using Proposition 1, we have E(β) = 0 and var(β) = τ 2R, where R = diag(1, r, · · · , rp).

Thus we have the following Bayesian model

y|β ∼ N(µ01 + UDβ, σ2In) and β ∼ N(0, τ 2R),

where In is the identity matrix. The posterior distribution of β given the data is

β|y ∼ N

(
RU ′

D(UDRU ′
D +

σ2

τ 2
In)−1(y − µ01), τ 2R− τ 2RU ′

D(UDRU ′
D +

σ2

τ 2
In)−1UDR

)
.

(5)

The above form of the posterior is different from the usual one used in the literature (see

equation (19)). The reason for preferring the above form is explained in the Appendix. Thus

the estimates (posterior means) for the 2p parameters are given by

β̂ = RU ′
D(UDRU ′

D +
σ2

τ 2
In)−1(y − µ01). (6)

When p is very large, the matrices UD and R become huge and difficult to handle. In

such cases a computationally easier form can be obtained as follows. Since f = Upβ, we

have fD = UDβ, where fD is the vector of function values corresponding to the design

matrix D. Therefore var(fD) = σ2
0ΨD = τ 2UDRU ′

D, where ΨD is the matrix of correlations

corresponding to D obtained using (4). Therefore UDRU ′
D = (1 + r)pΨD. Thus we obtain

β̂ =
1

(1 + r)p
RU ′

D(ΨD +
σ2

σ2
0

In)−1(y − µ01).

Let βs be the parameters we are mainly interested (say the main effects and two-factor

interactions) and Us the corresponding model matrix. Then

β̂s =
1

(1 + r)p
RsU

′
s(ΨD +

σ2

σ2
0

In)−1(y − µ01),

where Rs is obtained from R corresponding to the subset βs. The above expression does not

contain any huge matrices and therefore can be easily computed. The correlation matrix
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can be directly constructed as follows. The ijth element of ΨD is

(ΨD)ij =
p∏

k=1

ψ0(|xik − xjk|) = ψ0(2)hij =
(

1− r

1 + r

)hij

,

where (xi1, · · · , xip) and (xj1, · · · , xjp) are the ith and jth rows of the design matrix D and

hij =
∑p

k=1 |xik−xjk|/2 is the number of times the values in these two rows differ (Note that

ψ0(0) = 1).

There are three hyper parameters µ0, τ 2 (or σ2
0), and r in the Bayesian model. They can

be estimated from the data using empirical Bayes method. By integrating out β, we obtain

y ∼ N
(
µ01, τ 2UDRU ′

D + σ2In

)
= N

(
µ01, σ2

0ΨD + σ2In

)
. (7)

The log-likelihood is given by,

l = constant− 1

2
log det(σ2

0ΨD + σ2In)− 1

2
(y − µ01)′(σ2

0ΨD + σ2In)−1(y − µ01).

The empirical Bayes estimates can be obtained by maximizing the log-likelihood. Thus

(µ̂0, σ̂
2
0, r̂) = arg max

µ0,σ2
0 ,r

l (8)

Now consider the case of unknown σ2. A good estimate of σ2 can be obtained if we have

replicates. Let N be the total number of replicates in the experiment and DN the design

matrix obtained by repeating the rows in D as many times as the replicates. If we put a flat

prior on σ2, then the estimate of σ2 (posterior mode) is given by

σ̂2 =
1

N
(y − UDN

β̂)′(y − UDN
β̂). (9)

(If prior information on σ2 is available, then one can consider using the usual inverted gamma

conjugate prior after inserting σ2 into the prior variance of β, see, e.g, Chipman, George, and

McCulloch 2001). Equations (6), (8) and (9) need to be solved iteratively to obtain the final

estimates. Note that D should be replaced by DN in those equations. The procedure can

be greatly simplified if we have balanced replication, which is the case in most well designed

experiments. Suppose there are m replicates in each run and s2
i is the sample variance for
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the ith run. Then, σ̂2 =
∑n

i=1 s2
i /n is a good estimate of σ2. Now the estimation of β, µ0,

σ2
0, and r can be done from (6) and (8) by using the sample means instead of y and with σ2

replaced by σ2/m.

4. VARIABLE SELECTION

By the effect sparsity principle, not all of the variables are required to get a good pre-

diction and only a few may be important. Therefore most often one would like to identify a

parsimonious model containing only the important variables. This leads to the problem of

variable selection, which is a very important problem in regression analysis. The problem

is more complex in experiments because of the huge number of candidate variables (2p). In

a 2-level experiment, there are a total of 22p
possible models. For example, in an exper-

iment with 10 factors there are a total of 21024 models. It is almost impossible to search

through all of them to find the best model. This immediately rules out techniques such as

all-subsets regression. Whereas procedures like forward selection or step-wise regression can

be easily used. Another feasible approach is to use the stochastic search variable selection

(SSVS) procedure introduced by George and McCulloch (1993). It is a Bayesian procedure

in which a prior probability is assigned for each model and then a model with the highest

posterior probability given the data is identified through Gibbs sampling. See Chipman,

George, and McCulloch (2001) for a review of several Bayesian variable selection techniques.

Chipman (1996) introduced hierarchical priors that incorporates the effect heredity principle

into variable selection. Chipman, Hamada, and Wu (1997) and Chipman (1998) used those

priors together with the SSVS procedure to obtain a very useful variable selection strategy

for experiments.

In this article, we do not put a prior on the model space. Instead, a Bayesian version of the

forward selection strategy is proposed to do the variable selection. Indeed this strategy may

not do a thorough search in the model space as in the SSVS procedure, but is computationally

much simpler. Here forward selection is preferred over backward elimination because the

number of candidate variables is much larger than the expected number of significant effects.

Therefore a backward elimination strategy will be much more time consuming to implement
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than the forward selection strategy. Analysis of many real experiments shows that the

proposed strategy works well in practice.

Suppose that k variables are “important”. By this we mean that most of the variation

in the response can be explained by using these k variables. Let v1, · · · , vk ∈ {u1, · · · , u2p−1}
denote the k variables. For example v1 could be x3, v2 could be x1x2, etc. Now write the

transfer function as

f(x) =
k∑

i=0

µivi + ε(x), ε(x) ∼ GP (0, σ2
kψ), (10)

which is an extension of the model (1) used in Section 2. Here the prior mean of the transfer

function is expanded to include all the important variables. The variability around the prior

mean (σ2
k) is expected to decrease as more variables are included in the prior mean. For

the moment, assume that the correlation function (ψ) is known and does not change with

k. Note that before the analysis, we do not know anything about the v variables. We

will identify them one-by-one through a forward selection strategy. In 2-level experiments,

approximate the transfer function by

f(x) =
k∑

i=0

µivi +
2p−1∑

i=0

βiui, x ∈ X .

It is easy to show that the distribution of βi’s induced from (10) is the same as that in

Proposition 1, with τ 2 replaced by τ 2
k = σ2

k/(1 + r)p. The model parameters and the hyper-

parameters can be estimated as in the previous section.

To keep the exposition simple, we will explain the forward selection strategy using the

case of unreplicated experiments. In this case, we cannot obtain an unbiased estimate of

σ2 and therefore assuming it to be small compared to the variation of the response in the

experiment, we let σ2 = 0. The parameters can be estimated as follows. Let Vk be the model

matrix corresponding to µk = (µ0, · · · , µk)
′. Then the estimate of β is given by

β̂ =
1

(1 + r)p
RU ′

DΨ−1
D (y − Vkµk), (11)

and the posterior variance of β is given by

var(β|y) = τ 2
k

(
R− 1

(1 + r)p
RU ′

DΨ−1
D UDR

)
. (12)

13



To start the forward variable selection, set k = 0. Now we can estimate β from (11).

The first entering variable v1 can then be chosen as the one with the largest coefficient of β̂i.

More correctly, since the posterior variance of the βi’s are different, we may instead use their

standardized version. This can be justified as follows. Let σ̂2
βi

be the posterior variance of

βi, which is the (i + 1)th diagonal element of var(β|y) . Then the (1− α) highest posterior

density credible interval of βi is given by β̂i±Φ−1(1−α/2)σ̂βi
, where Φ is the standard normal

distribution function. The credible interval will not contain 0 if |β̂i/σ̂βi
| > Φ−1(1 − α/2).

Therefore we can compute the ratio

ti =
β̂i

σ̂βi

, (13)

and find the entering variable corresponding to the largest |ti|.
The hyper-parameters at each step in the forward variable selection procedure can be

estimated using empirical Bayes methods as described in the previous section. For σ2 = 0,

we obtain

µ̂k = (V ′
kΨ

−1
D Vk)

−1V ′
kΨ

−1
D y (14)

and

σ̂2
k =

1

n
(y − Vkµ̂k)

′Ψ−1
D (y − Vkµ̂k). (15)

Now consider the case with unknown correlation function. In general, the correlation

function can change with k. Therefore, we should estimate r at each step of the forward

selection procedure. Substituting for µ̂k and σ̂2
k in the integrated likelihood and maximizing,

we obtain

r̂(k) = arg min
r∈[0,1]

n log σ̂2
k + log det(ΨD). (16)

In highly fractionated 2-level experiments, there may not be enough information to precisely

estimate r(k). Then penalized likelihood estimation could be employed to get a stable es-

timate (Li and Sudjianto, 2005). Moreover, in such cases, we may avoid estimating r(k) at

each step by taking r̂(k) = r̂(0) for all k. This significantly reduces the computations. In fact,

the strategy becomes simpler than that of the frequentist approach when n << 2p. This is

because at the ith step of the frequentist variable selection procedure, 2p−i linear regressions

need to be performed to identify the entering variable. Whereas in the Bayesian procedure
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all the 2p− i coefficients can be estimated simultaneously and therefore the entering variable

can be easily identified.

To summarize the variable selection procedure, start with k = 0. First estimate r(0)

from (16), then µ0 and σ2
0 from (14) and (15) respectively. Now compute β̂ and var(β|y)

from (11) and (12), and identify v1 by finding the largest |ti|. Repeat the above procedure

with k = 1, 2, · · · until the improvement in the fit is negligible. The fit of the model can be

assessed by defining the R2 measure in the usual way:

R2
k = 1−

∑n
i=1{yi − ŷk(xi)}2

∑n
i=1(yi − µ̂0)2

, (17)

where ŷk(x) =
∑k

i=0 µ̂ivi and µ̂k = (µ̂0, · · · , µ̂k)
′. The R2

k can be plotted against k, and a

model can be selected when the increase in R2
k becomes small. This approach is very similar

to that used in regression analysis (see, e.g, Neter et al. 1996). We will explain the procedure

with some examples in the next section.

5. EXAMPLES

Example 1 : Consider the experiment reported by Hunter, Hodi, and Eager (1982) for

improving the fatigue life of weld-repaired castings. There were seven factors and a 12-run

Plackett-Burman design was used for the experiment. The design matrix (the first seven

columns) and the data are given in Table 1. Plackett-Burman designs have a complex

aliasing structure and so traditionally it was used only to analyze the main effects, ignoring

all interactions. The half-normal plot (Daniel 1959) of the main effects is shown in Figure

1a. We see that only the factor F seems to have an effect on the response. The R2 for the

model with this effect is 45%. If we also include the main effect of D, then the R2 becomes

59%.

Now consider the new approach. Here, there are no replicates and no extra information

is available about the σ2. Therefore, we let σ2 = 0. Now for step 0 of the forward selection

strategy, we first estimate the hyper-parameters. We obtain

r̂(0) = arg min
r∈[0,1]

n log σ̂2
0 + log det(ΨD) = 0.63,
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Table 1: Design Matrix and Data, Cast Fatigue Experiment

Run A B C D E F G 8 9 10 11 Y
1 + + − + + + − − − + − 6.058
2 + − + + + − − − + − + 4.733
3 − + + + − − − + − + + 4.625
4 + + + − − − + − + + − 5.899
5 + + − − − + − + + − + 7.000
6 + − − − + − + + − + + 5.752
7 − − − + − + + − + + + 5.682
8 − − + − + + − + + + − 6.607
9 − + − + + − + + + − − 5.818
10 + − + + − + + + − − − 5.917
11 − + + − + + + − − − + 5.863
12 − − − − − − − − − − − 4.809
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Figure 1: Analysis of Cast Fatigue Experiment
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Figure 2: Forward Variable Selection in Cast Fatigue Experiment

µ̂0 = (V ′
0Ψ

−1
D V0)

−1V ′
0Ψ

−1
D y =

1′Ψ−1
D y

1′Ψ−1
D 1

= 5.73,

and

σ̂2
0 =

1

n
(y − µ̂01)′Ψ−1

D (y − µ̂01) = 0.47.

Suppose we are interested only in the main effects and 2fis. The ti’s for them are calculated

from (13) and are plotted in the first panel of Figure 2. We see that the main effect of F is

large. Therefore in step 0, we select factor F and move to step 1. Note that to identify the

largest effect, we do not need a half-normal plot. It is plotted only for illustration. For step

1, the prior mean of the transfer function is µ0 + µ1v1, where v1 = x6. Thus V1 is an n× 2
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Figure 3: Analysis of Example 2, the true model is Y = A + 2AB + 2AC + ε.

matrix whose first column is 1 and the second column is the values of x6 in the design. We

obtain r̂(1) = 1, µ̂1 = (5.73, 0.46)′, and σ̂2
1 = 0.26. The half-normal plot of the ti’s is given in

the second panel of Figure 2. We see that the two-factor interaction FG is large. Thus choose

v2 = x6x7 and proceed to step 2. Continuing similarly, the effects AE, EF, · · · are selected

(see Figure 2) The R2
k can be calculated at each step using (17) and is plotted in Figure 1b.

We see that only the two effects F and FG seem to be important (The importance of the

above 2fi was first identified by Hamada and Wu (1992) using a frequentist forward selection

strategy). A model with the above two effects gives an R2 = 89%, which is a substantial

improvement over the model with F and D. This clearly shows the superiority of the new

analysis over the traditional analysis.

Example 2 : Consider an example given by Hamada and Wu (1992). The experiment uses

the same 12-run Plackett-Burman design with 11 factors (denoted as A, B, · · ·, K). The data

is generated from the model Y = A + 2AB + 2AC + ε, where ε ∼ N(0, 0.252), but we will

analyze the experiment as though the true model is unknown. The half-normal plot from

the traditional analysis is shown in Figure 3. This analysis shows that the main effects of E,

H, K, and I are significant. Thus it completely misidentifies the true model. Now consider

the new analysis. The R2-plot is given in the second panel of Figure 3. We see that the
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new approach correctly identifies AB, AC, and A as the most significant effects. Hamada

and Wu (1992) used the above example to show that their forward selection strategy can

sometimes fail. Their primary method works well when only a few interactions are significant

and are smaller than the main effects, which is not the case here. This example shows that

the proposed procedure can perform better than their frequentist procedure.

6. OPTIMAL DESIGN

The objective is to choose the “best” n points from the set of 2p points in {−1, 1}p.

One good criterion is to choose the n points such that the prediction error in {−1, 1}p is as

small as possible. Let Up denotes the full factorial model matrix. Now, we want to find a

D such that E{(f − µ01− Upβ̂)′(f − µ01− Upβ̂)} is a minimum, where f is the vector of

function values in {−1, 1}p and β̂ = E(β|y) for which the expression is given in (6). But

since f = µ01 + Upβ, the above criterion reduces to minimizing 2pE[tr{var(β|y)}]. Note

that by virtue of the normal distribution, var(β|y) does not depend on the data. Therefore,

define

A(D, r, λ) = τ−2
2p−1∑

i=0

var(βi|y)

= tr{R−RU ′
D(UDRU ′

D + λIn)−1UDR},

where λ = σ2/τ 2. The Bayesian A-optimal criterion is to minimize A(D, r, λ). For details on

different Bayesian optimality criteria, see Chaloner and Verdinelli (1995) and the references

therein. For a given r and λ, we can minimize A(D, r, λ) with respect to D to obtain the

optimal design. Because λ is not known before the experiment, we need to choose a value of

it for designing the experiment. If we assume that the factor effects are large compared to

the error variance, then we can neglect the contribution of the error term, which is equivalent

to setting λ = 0. Usually, the objective function in the Bayesian A-optimal design criterion

is defined as tr{(U ′
DUD + λR−1)−1}. Note that A(D, r, 0) cannot be obtained as a special

case of the above expression, because it is defined only when λ > 0 (see the Appendix).

Therefore, even though A(D, r, 0) is important, it has not received much attention in the

literature.
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The objective function A(D, r, λ) gives equal importance to all the parameters in the

model. But in some cases we may want to give more importance to certain parameters.

Therefore, we may define a more general objective function
∑2p−1

i=0 wivar(βi|y), where wi’s

are some pre-specified weights. Consider some special cases of it. Define,

A0(D, r, λ) = τ−2var(β0|y), A1(D, r, λ) = τ−2
p∑

i=1

var(βi|y), · · · , Ap(D, r, λ) = τ−2var(β2p−1|y).

Thus A(D, r, λ) =
∑p

i=0 Ai(D, r, λ). Here A0(D, r, λ) focuses on minimizing the variance of

β0, A1(D, r, λ) on the main effects, and so on. This leads to a new class of design criteria.

When n is small, we may not be interested in estimating all the 2p parameters in the model.

Suppose we are interested only in the main effects and 2fis. Then, our design criterion should

be to minimize A0(D, r, λ) + A1(D, r, λ) + A2(D, r, λ). The criterion can again be modified

depending on the objective of the experiment. If the objective is to obtain a good prediction

model, then the above criterion can be used. But if the objective is optimization, then we

do not need to obtain a precise estimate of the intercept and therefore, we should minimize

A1(D, r, λ) + A2(D, r, λ), whereas if screening is the objective, then A1(D, r, λ) should be

minimized.

The above criteria are highly nonlinear, non-convex functions of binary variables. To

optimize them, general purpose algorithms such as genetic algorithms can be used (Hamada

et al. 2001). Alternatively, one may try to derive more efficient algorithms by exploiting the

structure of the objective function. This will not be discussed here. Instead, we will study

some popular designs using the above criteria. Consider a 2p−k fractional factorial design.

Toman (1994), Mitchell, Morris, and Ylvisaker (1995) and Kerr (1999, 2001) discuss some

closely related issues. Here we present some new results and obtain additional insights into

the 2p−k designs. A 2p−k design has 2k words in the defining contrast subgroup, including

a column of 1’s denoted as I. From this defining contrast subgroup, we can obtain 2p−k

independent aliasing relationships. For example, for a 26−2
IV design with generators 5 = 123

and 6 = 124, the defining contrast subgroup is I = 1235 = 1246 = 3456. This can be

used to obtain the other 24−1 = 15 independent aliasing relationships of the design, such as

1 = 235 = 246 = 13456. Let J0(D) denote the indices of the effects in the defining contrast
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subgroup and Jj(D), j = 1, · · · , 2p−k, that of the other aliasing relationships. For example,

J1(D) contains the indices of the effects 1, 235,246, and 13456. Then for a positive fraction

(all design generators have positive signs) of a 2p−k design , we obtain for an i ∈ Jj(D)

βi|y ∼ N

(
Rii∑

i∈Jj(D) Rii + λ/2p−k
lj, τ 2Rii − τ 2R2

ii∑
i∈Jj(D) Rii + λ/2p−k

)
, (18)

where lj = (U−1
p−k(y − µ01))j is the estimate of the jth aliasing relationship. The proof is

given in the Appendix. See Kerr (2001) for a related result.

Let W (D) = {N1(D), N2(D), · · · , Np(D)} be the wordlength pattern of design D, where

Ni(D) denotes the number of words of length i in the defining contrast subgroup of the

design D. Noting that N0(D) = 1 and J0(D) gives the indices of the effects in the defining

contrast subgroup, from (18) we obtain

A0(D, r, λ) = 1− 1

1 +
∑p

i=1 riNi(D) + λ/2p−k
.

Thus, Minimizing A0(D, r, λ) with respect to D is equivalent of minimizing
∑p

i=1 riNi(D).

This shows that the design that minimizes A0(D, r, λ) can be obtained by minimizing a

weighted average of N1(D), · · · , Np(D) with lesser weights on the higher order effects. On the

other hand, a minimum aberration (MA) design can be obtained by sequentially minimizing

N1(D), · · · , Np(D). The sequential minimization imposes a stronger requirement of the effect

hierarchy principle. Because Proposition 1 gives a justification of the hierarchy principle and

gives a quantification of the importance of each effect, minimizing a weighted average of the

word length pattern is a more reasonable criterion.

As an example consider the following two 29−4
IV designs discussed in the introduction.

D1 : 6 = 123,7 = 124,8 = 125,9 = 1345 and D2 : 6 = 123,7 = 124,8 = 134,9 = 2345.

The first one is an MA design, whereas the second one is the maximum number of clear

2fis (MaxC2) design. Their word length patterns are W (D1) = (0, 0, 0, 6, 8, 0, 0, 1, 0) and

W (D2) = (0, 0, 0, 7, 7, 0, 0, 0, 1). It is easy to see that 6r4 + 8r5 + r8 < 7r4 + 7r5 + r9 for all

r ∈ (0, 1) and therefore D1 is uniformly better than D2 in terms of minimizing A0(D, r, λ).

Thus, in this case the MA design is uniformly better than the MaxC2 design. Theoretically

it is possible to have a word length pattern where this is not true, but it is not clear that
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such a design really exists! We can obtain the following result fairly easily. The proof is

given in the Appendix.

Proposition 2: There exists an r0 ∈ (0, 1) such that for all r ∈ (0, r0) and for all λ, an

MA design minimizes A0(D, r, λ).

The criterion A0(D, r, λ) considers only the posterior variance of β0. Because optimization

is the most common objective in industrial experiments, a more fair comparison of the designs

can be obtained using A12(D, r, λ) = A1(D, r, λ)+A2(D, r, λ). Consider the case with λ = 0

and let A12(D, r) = A12(D, r, 0). It can be easily calculated as

A12(D, r) = tr(Rs − 1

(1 + r)p
RsU

′
sΨ

−1
D UsRs),

where Us is the model matrix that includes only the main effects and 2fis; and Rs is the

corresponding sub-matrix of R. Numerically one can show that A12(D1, r) > A12(D2, r)

when r ≤ 0.1145 and A12(D1, r) < A12(D2, r) when r > 0.1145. Thus, in the above example,

the MA design is preferred over the MaxC2 design only when r > 0.1145. But since an

MA design is better than the MaxC2 design for a larger and more meaningful range of r, in

practice we should choose the MA design unless there is a compelling reason to use a small

value of r. A more careful analysis shows that A1(D1, r, 0) < A1(D2, r, 0) for all r, but this is

not true in the case of A2(D, r, 0). This is expected because the MaxC2 design has a lesser

amount of contamination on the 2fis by the other 2fis & main effects and so A2(D, r, 0) can

be smaller. The optimality of MA design with respect to A1(D, r, 0) is also not surprising,

because Cheng, Steinberg, and Sun (1999) and Tang and Deng (1999) have shown that an

MA design sequentially minimizes the number of interactions confounded with the main

effects.

We note that the MA criterion can be used only with the regular fractional factorial

designs, whereas the criterion A(D, r, λ) is very general and can be used with any kinds of

designs. It will be interesting to compare A(D, r, λ) with a criterion for nonregular designs

such as the minimum G2-aberration criterion proposed by Tang and Deng (1999).
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7. CONCLUSIONS

Specifying a prior distribution for the sheer number of parameters in the linear model is

a difficult and important step in the design and analysis of fractionated experiments. We

have shown that by using a functional prior on the underlying transfer function, a prior

distribution can be induced for all the model parameters. Since the functional prior requires

the specification of only a few hyper-parameters, the approach can be easily implemented in

practice. We have given the details of estimation of the model parameters and the hyper-

parameters. A Bayesian version of the forward selection strategy is proposed for variable

selection. The usefulness of the new approach is demonstrated using the analysis of the

cast fatigue experiment and another simulation example. We have also proposed a new

class of design criteria and gave a Bayesian justification to the popular minimum aberration

criterion.

Functional priors using Gaussian processes are widely used in the design and analysis

of computer experiments. This article uses this idea in the design and analysis of physical

experiments, which led to many new developments. It is possible to use some of the new

findings, such as the prior specification for the model parameters, in the analysis of computer

experiments. Extensions of these ideas thus, will lead to a unified approach to both computer

and physical experiments.

This article focuses on 2-level experiments. Although the result of Theorem 1 is very

general and can be used with any number of levels, it is not as appealing as that of Proposition

1 and does not give much insight into the properties of the model parameters. Ingenious

selection of the coding system may improve the interpretation. This has to be worked out

case by case by taking three levels, four levels, etc. Distinction between qualitative and

quantitative factors is also to be made when dealing with higher level designs. This is part

of the future research work. The design of experiments for three levels is to be given special

attention because of its importance in industrial experiments (see, e.g, Taguchi 1987 and

Wu and Hamada 2000). The methods for design of experiments for higher levels are not as

widely accepted as those for two level experiments and therefore, there is great potential for
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improvement over the existing methods.
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APPENDIX: PROOFS

Proof of Proposition 1

Let Ui be the full factorial model matrix of the first i factors including all interaction columns

and a column of 1’s. Generate it using the following recursive relationship

Ui =




Ui−1 −Ui−1

Ui−1 Ui−1


 ,

for i = 1, · · · , p and with U0 = 1. Thus Up is a 2p × 2p matrix, where the pth factor appears

only in the last 2p−1 columns.

Let Ψp be the matrix of correlations obtained from (4) corresponding to the factor levels

in the Up matrix. By the above construction of the full factorial matrix, the pth factor

takes −1 for the first 2p−1 rows and 1 for the remaining 2p−1 rows. Therefore the correlation

between any two points within the first 2p−1 rows or the last 2p−1 rows is the same as that

of the correlation with p − 1 factors. Whereas the correlation between a point in the first

2p−1 rows and a point in the last 2p−1 rows will differ by a factor of ψ0(2) (because of the

product correlation structure). Thus we have

Ψp =




Ψp−1 ψ0(2)Ψp−1

ψ0(2)Ψp−1 Ψp−1


 .

Simple matrix algebra gives

var(β) =
σ2

0

22p
U ′

pΨpUp =
σ2

0

22p−1
{1 + ψ0(2)}




U ′
p−1Ψp−1Up−1 0

0 rU ′
p−1Ψp−1Up−1


 .
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Because the pth factor is arbitrary and since the last 2p−1 columns contain effects of order

one higher than the first 2p−1 columns, we conclude that the variance decrease geometrically

at the rate of r and that the effects are uncorrelated. Noting that U ′
0Ψ0U0 = 1, we obtain

var(β0) = σ2
0/2

p{1 + ψ0(2)}p = σ2
0/(1 + r)p. Denote it as τ 2. Now, the result follows from

Theorem 1. ♦

Proof and Discussion of Equation (5)

We have y = µ01+UDβ +e, where e = (e1, · · · , en)′. Since e is independent of β, we obtain

cov(β,y) = τ 2RU ′
D and var(y) = τ 2UDRU ′

D + σ2In. Also, E(β) = 0, var(β) = τ 2R, and

E(y) = µ01. Now (5) can be obtained using the formula for the conditional distribution of

normal variates (see, e.g, Santner, Williams, and Notz 2003, page 211).

When σ2/τ 2 > 0, using Woodbury’s formula (see Harville 1997, page 424) (5) can be

simplified to

β|y ∼ N

(
(U ′

DUD +
σ2

τ 2
R−1)−1U ′

D(y − µ01), σ2(U ′
DUD +

σ2

τ 2
R−1)−1

)
, (19)

which is the most commonly used form in the literature. We prefer to use the form in (5)

due to the following reason. Consider the case with σ2/τ 2 = 0. This can happen if σ2 = 0 or

if τ 2 = ∞. The latter leads to the case of a noninformative prior for β, which should not be

used because we are dealing with the problem of estimating a higher number of parameters

than the number of observations. Therefore we only need to consider the case of σ2 = 0. If

rank(UD) = n, then (UDRU ′
D)−1 exists and from (5) we obtain

β|y ∼ N
(
RU ′

D(UDRU ′
D)−1(y − µ01), τ 2R− τ 2RU ′

D(UDRU ′
D)−1UDR

)
. (20)

Whereas, since rank(U ′
DUD) = n < 2p, U ′

DUD is not invertible and therefore (19) cannot

be used. Interestingly, even in the case of τ 2 = ∞, the posterior mean in (5) exists and is

equal to that in (20). More practically, (20) can be used when σ2/σ2
0 is small, which is a very

reasonable assumption. This is because, we have UDRU ′
D +σ2/τ 2In = (1+r)p(Ψp +σ2/σ2

0In)

which is approximately (1 + r)pΨp if σ2/σ2
0 << 1. This simplification cannot be done for

(19). Thus, the form in (5) is more general and is therefore used in this article. ♦
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Proof of Equation (18)

Let Up−k be the full factorial model matrix for p − k factors. Let e = (e1, · · · , en)′. We

have µ01 + UDβ + e = y. Therefore, Qβ + v = l, where Q = U−1
p−kUD, v = U−1

p−ke and

l = U−1
p−k(y − µ01). Now consider the ith component of β. We want to find the conditional

distribution of βi|y. First note that v ∼ N(0, σ22k−pI2p−k) and therefore the components of

v are independent. Also v does not contain any information about β. By Proposition 1,

the components of β are also independent. For regular fractional factorial designs, an effect

is either fully aliased or independent of the other effects and appears in only one aliasing

relationship. Moreover, for positive fractions Qji = 1 if i ∈ Jj(D) and 0 otherwise (see, e.g,

Tang and Deng 1999). Then for an i ∈ Jj(D), the conditional distribution of βi|Qβ + v = l

is the same as the conditional distribution of βi|∑i∈Jj(D) βi + vj = lj. Now by using the

formula for the conditional distribution of normal variables, we obtain

E(βi|y) = E(βi|
∑

i∈Jj(D)

βi + vj = lj)

= τ 2Rii{
∑

i∈Jj(D)

τ 2Rii +
σ2

2p−k
}−1lj,

var(βi|y) = var(βi|
∑

i∈Jj(D)

βi + vj = lj)

= τ 2Rii − τ 2Rii{
∑

i∈Jj(D)

τ 2Rii +
σ2

2p−k
}−1τ 2Rii.

It is easy to verify that for designs that are not positive fractions, the sign of the means can

change depending on the sign of the design generators but not the variances. ♦

Proof of Proposition 2

A0(D, r, λ) can be minimized by minimizing g(r,D) =
∑p

i=1 riNi(D). Let D∗ be an MA

design. Then, for any other design D, g(r,D∗)− g(r,D) =
∑p

i=1 ri{Ni(D
∗)−Ni(D)}. Let j

be the largest value of i for which Ni(D
∗) 6= Ni(D). Then, g(r,D∗)−g(r,D) = rjh(r), where

h(r) =
∑p

i=j ri−j{Ni(D
∗)−Ni(D)}. Since D∗ is an MA design, Nj(D

∗) < Nj(D). Therefore

h(0) < 0. Also, since h(r) is a continuous function of r, there exists an r0 ∈ (0, 1) such that

h(r) < 0 for all r ∈ (0, r0). Thus g(r,D∗) < g(r,D) for all r ∈ (0, r0), which completes the

26



proof. ♦
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