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ABSTRACT

The failure amplification method (FAMe) is an experimental technique that uses a special

type of factor known as amplification factor to amplify the failure probability so as to max-

imize the information in the experiment. A general strategy for model building is proposed

by utilizing the information in the amplification factor. Generalized linear models (GLM)

for binary response provide the flexibility of choosing proper links. The best design settings

for improving the process capability are determined through carefully selected GLMs and

loss functions. Two experiments for improving the quality of printed circuit boards are used

to illustrate the proposed strategy.
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Introduction

Designed experiments are widely used for reducing failure or defect rate in manufacturing

processes. The experiment is carried out by changing the factor settings according to the

levels specified by the investigator and observing the number of failures. When the proba-

bility of failures is small, it can happen that very few failures occur in the experiment. With

such an outcome, it is difficult or even impossible to build an adequate model and obtain

optimum process settings. To overcome this difficulty, Joseph and Wu (2004) proposed a

novel experimentation strategy known as failure amplification method (FAMe). In FAMe, an

amplification factor is selected based on the physical knowledge of the process and is used to

amplify the failures. The experiment is then performed at the amplified conditions to ensure

that an adequate number of failures are observed, which will provide sufficient information

for modeling, analysis, and optimization. It is assumed that if the process is improved at

the amplified conditions, then it is also improved at the normal conditions. One natural

question would be: if the failure rate in the normal conditions is small, then why should we

even perform an experiment? The answer is to improve the process capability. If the process

capability is not improved, then even with a slight shift in the process conditions (due to

some special causes) the failure rate can shoot up. This is pictorially depicted in Figure 1.

Thus it is essential to reduce the failure rate as much as we can.

The models proposed in Joseph and Wu can be simplistic and may not be adequate to deal

with more complex processes. In this article we propose new modeling strategies and provide

a general framework for the analysis of experiments using FAMe. Since the experiment is

performed at the amplified conditions, we need to extrapolate to the normal conditions for

optimization. Because of this, carefully selected models should be used for the analysis.

The performance of these models at the tails, i.e., regions with low failure rate, is critical

for obtaining accurate results during extrapolation. Generalized linear models (GLMs) are

suitable for the analysis of failure data (see McCullagh and Nelder (1989), Hamada and

Nelder (1997)). Our proposed strategy builds appropriate nonlinear models but avoids the

complexity of using generalized nonlinear models by utilizing the availability of GLMs in
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Figure 1: Importance of using FAMe to improve process capability.

standard software. It is illustrated with the analysis of two real experiments on printed

circuit boards (PCBs).

Motivating Examples

We use two examples to illustrate the proposed modeling strategy. The first is an ex-

periment on the inner layer (IL) manufacturing process of PCBs, which was analyzed by

Joseph and Wu (2004). It is included here as a comparison of our proposed methods with

theirs. The second example is an experiment on the outer layer (OL) manufacturing process

of PCBs. The new feature of this experiment is the presence of a noise factor.

In PCBs, circuits can be laid out in different layers. A double-sided (DS) PCB has two

layers of circuits (top and bottom), whereas a multi-layer (ML) PCB has more than two layers

of circuits (4, 6, 8, · · ·). To manufacture an ML PCB, first inner layers are manufactured

and sandwiched between two copper layers using a pressing operation. Each inner layer has

circuits on two sides. Thus, a 4-layer PCB contains one inner layer, a 6-layer PCB contains

two inner layers, and so on. An overall view of the process is shown in Figure 2. Numerous

defects are generated during the manufacturing of PCBs, of which shorts and opens in the

circuits are the major ones. The first experiment was conducted to reduce shorts and opens

in the inner layers and the second one in the outer layers.
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Figure 2: Inner layer (IL) and outer layer (OL) processes in PCB manufacturing.

The rejection due to inner layer shorts and opens is of the order of 1-2% . If we conduct

an experiment with such a low failure rate, then we may observe only a few defects in

the experiment, which cannot be used for estimation of the model parameters. We can

overcome the problem using a large number of PCBs for each experiment, but the cost will

be prohibitive. Therefore, a cost-effective strategy is to run the experiment after amplifying

the failures. It is known that the shorts will increase if the spacing between the conductors is

reduced and opens will increase if the line width of the conductors is reduced. The industry

was mainly engaged in the production of circuits with line width/spacing 5 mils (1 mil

= 0.001 inch) or higher (up to 15 mils). Therefore to amplify the failures, the experiments

were performed by creating a special circuit pattern with 3 and 4 mils. Joseph and Wu

(2004) classified this type of amplification as complexity factor method, because the line

width and spacing here are the complexity factors of the product.

Example 1: Eight factors were selected from the inner layer PCB process for experimentation.

The factors and levels are shown in Table 1. An 18-run orthogonal array given in Table 2

was used for the experiment. The experiment was conducted by processing one inner layer

for each run. A special inner layer circuit pattern was designed only for the purpose of the

experiment. The inner layer contains conductors with 3, 4, 5, 6, and 7 mils of line width and

spacing. See Maruthi and Joseph (1999) for details of the experiment. There were 80 pairs of

conductors on each inner layer. Since a pair of conductors give rise to two opportunities for
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Table 1: Factors and levels for the IL PCB experiment in example 1.

Control factors Notation Levels
1 2 3

Preheat x1 No∗ - Yes
Surface preparation x2 Scrub∗ Pumice Chemical
Lamination speed x3 1.2 mpm 1.5 mpm∗ 1.8 mpm

Lamination pressure x4 20 psi 40 psi∗ 60 psi
Lamination temperature x5 95 0C 105 0C∗ 115 0C

Exposure energy x6(m) 14 17∗ 20
Developer speed x7 3 fpm 4 fpm∗ 5 fpm

ORP x8 500 530∗ 560
∗ Operating levels of the factors in production.

opens and one opportunity for shorts, there are a total of 160 opportunities for opens under

each line width and 80 opportunities for shorts under each spacing. The data on shorts and

opens from the experiment are shown in Table 2.

Example 2: About 5% of the PCBs have shorts in the outer layers and about 1% have

opens. Most of the outer layer shorts can be reworked, whereas very few of the opens can

be corrected. Thus in outer layers, an open is more serious than a short. Again eight factors

were selected from the image transfer stage of the outer layer manufacturing process for

experimentation. The factors and levels are shown in Table 3. The same 18-run orthogonal

array in Table 2 was used for the experiment. The factors are assigned to the columns in the

same order given in Table 3. Outer layer process can be used for DS boards or ML boards.

Because the manufacturer had no control over the type of the board, it is treated as a noise

factor, and was included in the experiment. There was one more important noise factor

in the process. The solution in the developer was changed after processing several boards.

Therefore, its performance towards the end was not as efficient as when it was new. When

a cross array is used for experimentation, the number of runs will double if two noise factors

are used. To reduce the run size, the method of noise factor compounding (Taguchi 1986)

was employed. It is known that more shorts will occur with older developer bath. Moreover,
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Table 2: OA(18, 21 × 37) and data from the IL PCB experiment in example 1

Opens Shorts
Run x1 x2 x3 x4 x5 x6 x7 x8 3 4 5 6 7 3 4 5 6 7

1 1 1 1 1 1 1 1 1 33 7 4 0 1 1 0 0 0 0
2 1 1 2 2 2 2 2 2 7 9 1 0 0 4 1 0 0 0
3 1 1 3 3 3 3 3 3 14 3 1 0 0 19 2 0 0 0
4 1 2 1 1 2 2 3 3 2 0 2 0 0 9 0 0 0 0
5 1 2 2 2 3 3 1 1 7 1 2 1 0 22 1 1 1 0
6 1 2 3 3 1 1 2 2 78 30 7 1 1 8 0 0 0 0
7 1 3 1 2 1 3 2 3 9 1 3 0 0 19 1 0 0 0
8 1 3 2 3 2 1 3 1 7 0 1 0 1 4 0 1 0 0
9 1 3 3 1 3 2 1 2 4 3 0 0 0 7 0 0 0 0
10 2 1 1 3 3 2 2 1 6 0 0 0 0 22 1 0 0 1
11 2 1 2 1 1 3 3 2 13 2 0 0 0 34 2 2 0 0
12 2 1 3 2 2 1 1 3 34 5 0 1 3 13 4 1 0 0
13 2 2 1 2 3 1 3 2 8 3 0 0 0 7 0 1 0 0
14 2 2 2 3 1 2 1 3 25 8 0 2 1 25 1 0 0 0
15 2 2 3 1 2 3 2 1 7 0 0 0 0 41 1 0 0 1
16 2 3 1 3 2 3 1 2 10 6 0 0 0 45 9 5 0 1
17 2 3 2 1 3 1 2 3 8 0 0 0 0 3 0 0 0 0
18 2 3 3 2 1 2 3 1 12 2 0 0 1 7 2 0 0 0

ML boards have greater number of shorts than DS boards. Therefore the combination of ML

boards with old bath will lead to more shorts than the combination of DS boards with fresh

bath. Thus the two levels of the compounded noise factor are defined as N1: DS/Fresh bath

and N2: ML/Old bath. As in the inner layer experiments, a special test pattern was designed

for the outer layers. In the case of outer layer board, there were 88 pairs of conductors. Thus,

there is a total of 88 opportunities for shorts and 176 opportunities for opens for each line

width and spacing. The data are shown in Table 4. More details about this experiment can

be found in Maruthi et al. (1998).
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Table 3: Factors and levels for the OL PCB experiment in example 2.

Factors Notation Levels
1 2 3

Vacuum delay time x1 2 sec∗ - 10 sec
Developer concentration x2 .85 % 1.0%∗ 1.15 %

Preheat temperature x3 150 0C∗ 250 0C 400 0C
Developer break point x4 30 % 50%∗ 70 %

Exposure step x5 13 16∗ 19
Develop pressure x6 1.7 bar 2.0 bar∗ 2.3 bar

Lamination temperature x7 90 0C 105 0C∗ 115 0C
Lamination speed x8 1.5 m/min 1.8 m/min∗ 2.1 m/min

Noise factor N DS/Fresh bath - ML/Old bath
∗ Operating levels of the factors in production.

Table 4: Data from the OL PCB experiment in example 2.

DS/Fresh Bath ML/Old Bath
Opens Shorts Opens Shorts

Run 3 4 5 6 7 3 4 5 6 7 3 4 5 6 7 3 4 5 6 7
1 1 0 0 0 0 30 12 3 1 2 1 1 0 0 0 42 30 6 3 7
2 15 1 0 0 0 6 5 1 0 1 1 1 0 1 1 38 12 5 3 0
3 43 3 1 0 0 2 4 2 0 0 32 2 0 0 1 18 8 6 1 1
4 2 1 0 0 0 16 8 1 0 2 1 0 0 0 1 27 13 5 3 2
5 114 4 0 0 0 2 2 0 0 0 6 1 0 0 0 17 15 9 3 3
6 4 0 0 0 0 23 8 0 0 1 1 1 1 1 0 47 20 5 3 2
7 4 0 0 0 0 32 13 4 3 4 0 1 0 0 0 41 22 5 2 4
8 20 1 0 0 0 10 1 2 1 0 3 1 0 0 0 21 10 2 1 1
9 112 4 0 0 0 16 13 1 0 0 17 1 0 0 0 43 30 7 6 1
10 115 13 1 0 0 3 1 1 1 0 12 2 0 0 0 27 9 0 3 1
11 1 0 0 0 0 18 5 2 0 5 1 0 0 0 0 46 20 9 4 5
12 23 11 12 10 9 45 15 9 2 2 2 3 2 1 1 62 37 26 16 8
13 68 2 0 0 0 8 5 1 0 0 3 1 0 0 0 18 10 2 5 1
14 5 1 0 0 0 22 4 0 0 0 1 1 0 0 1 22 19 15 7 1
15 3 0 0 0 0 33 9 4 1 1 2 2 0 0 0 42 23 11 6 5
16 7 1 0 0 0 29 7 1 1 0 5 1 0 1 1 40 27 9 4 3
17 73 1 0 0 0 13 1 3 1 0 6 2 1 1 2 40 26 7 5 3
18 1 0 0 0 0 28 12 4 4 2 1 0 1 0 0 37 16 8 5 3
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Model Building

Statistical-Physical Based Modeling Strategies

When the responses are recorded as failure or success and are independent under some

control (X) and noise (N) factors, binomial model with failure probability p(X,N,M) is a

natural candidate for describing the outcome, where M denotes the amplification factor. A

general model relating failure probability and the variables can be described by

f(p) = λ(X,N,M), (1)

where f is the link function in the GLM and λ is an appropriate function of the variables.

Now we propose a modeling strategy for choosing f and λ.

For binomial family, the typical link functions are complimentary log-log (cloglog), logit,

and probit:

log log
1

1− p
, log

p

1− p
, and Φ−1(p). (2)

The canonical link of binomial case is logit, which leads to logistic regression and is often used

because the minimum sufficient statistics exist for regression parameters (Lindsey 1997). The

complimentary log-log link has its own glamor through the connection with Poisson distri-

bution. The probit link assumes the underlying random effect follows a normal distribution.

However none of the above guarantees the best fitting for real data. One may use other

reasonable cumulative distribution functions or Box-Cox transformations to obtain links for

better fitting. To keep the modeling strategy simple, we stay with the popular link functions

in (2). Other flexible links can be considered only when the model fit is not satisfactory.

Another advantage of using these links is their availability in most statistical software.

The functional form of λ(X,N,M) can be obtained by statistical modeling on the ob-

served data and physical knowledge of the factors. The amplification factor is deliberately

chosen because of its dominant effect on failure. The physical knowledge of the factor effects,

especially on the amplification factor, will help to simplify the possible model forms. We

consider the following simpler model:

f(p) = λ(X,N) + g(X,N)h(M), (3)
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Figure 3: The probability values of cloglog, logit and probit links. Left panel shows the

middle portion and the right panel shows the tail part.

where λ(X,N) and g(X,N) are linear models in X and N. The function h(M) is a monotonic

nonlinear function in M . The choice of h is very critical, particulary because we need

to extrapolate outside the experimental range of M . Because the failure rate is likely to

plateau in normal production levels of the amplification factor, simple polynomial functions

will not be appropriate for h. Figure 4 shows the failure probability in Example 1 under the

complimentary log-log link. Clearly there is a nonliner trend. Low order polynomial functions

of amplification factor do not fit well with any of the three links. Three candidates,

log M, (M − a)−b, and exp(−a(M − b)c) (4)

are thus considered for the h function, where a, b, and c are constants that will be determined

through an iterative estimation procedure. More complicated functions can be considered

but should only be used when the simpler ones fail.

Model Selection Procedure

There are three parts of the model that need to be chosen, namely, a link function, a

nonlinear function h, and the significant control and noise factor effects in λ and g. Figure

3 shows the differences of the three link functions. For failure amplification problem, lower

tail should be the primary concern. Interestingly the lower tail of cloglog and logit behave

almost the same, whereas the probit link has smaller probabilities compared to the other two.
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These properties indicate that these three links have different scales of model parameters

and that the probit link will have more distinct estimates than the other two links. We use

the Akaike information criterion (AIC) for model selection because of its ability to compare

nested and non-nested models and its popularity in applications. Other criteria like BIC or

Cp can also be used and the ensuing steps will be similar to that of using AIC.

Choosing/estimating functions f, λ, g, and h simultaneously is cumbersome and is not

supported by most commercial statistical software. Therefore we provide an iterative strat-

egy that foregoes the burden of programming and utilizes a standard GLM software (for

example, the glm command in Splus and R).

Modeling Strategy:

1. Choose a function h with parameters a and a link function f . Fit the model f(p) =

h(M, a), which can be done by minimizing the objective function of AIC with respect

to a. Denote the estimate by â.

2. Use forward selection procedure (Neter et al., 1996) to select important factors and

interactions based on the effect heredity principle (Hamada and Wu, 1992) to obtain

λ and g in f(p) = λ(X,N) + g(X,N)h(M, â).

3. Use the functions λ and g obtained in step 2 to minimize the objective function of AIC

with respect to a.

4. Repeat steps 2 and 3 until the model functions λ, g, and the parameter estimate â

converge.

5. Repeat steps 1 through 4 for different choices of h and f . Select the functions which

gives the lowest AIC.

Note that step 2 can be easily carried out using a standard GLM software, thus simplifying

the estimation procedure. This step can be further simplified by using plots of data to select

the important factors in g. Then the variable selection needs to be applied only for λ. We

now illustrate this simplified strategy using the two PCB examples.
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Figure 4: Example 1. Failure probability with a complimentary log-log transformation for

opens. Numbers correspond to the average of factor levels. Lines are the fitted values by

the model with cloglog link (9).

Example 1. IL PCB Experiment

The data was analyzed by Joseph and Wu (2004) assuming the relationship:

log log
1

1− p
= λ(X(−6)) + γ log m + α log M, (5)

where the exposure energy (x6) is treated as an adjustment factor denoted by m. Note

that this is a special case of (3) with f as the cloglog link, g equal to a constant α, and

h(M) = log M . The λ(X(−6)) is a second-order linear model (main effects and two-factor

interactions) of the control factors, excluding x6. The two degrees of freedom of three-level

factors are split into linear and quadratic components with contrasts xl = (−1, 0, 1) and

xq = (1,−2, 1). The two-level factor x1 is coded with x1l = (−1, 1).

Denote the two amplification factors, line width and spacing, by M1 and M2. Note that

M1 is an amplification factor for opens and M2 is an amplification factor for shorts. The

following two models for opens (6) and shorts (7) were selected by forward selection based
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Table 5: Analysis of example 1.

Data Link (Eq.#) AIC Size Deviance
Opens Cloglog-JW (6) 147.91 7 133.91

Cloglog (9) 121.64 10 101.64
Logit 122.62 11 100.62
Probit 137.48 12 113.48

Shorts Cloglog-JW (7) 101.08 6 89.08
Cloglog 84.24 11 62.24

Logit (10) 81.71 10 61.71
Probit 85.53 12 61.53

on AIC:

log log
1

1− p
= 10.27− .73x5l + 0.57x4l − .33x2l − .27x1lx5q + 2.77 log m + 5.06 log M1, (6)

log log
1

1− p
= −6.66 + .48x1l + .20x4l − .15x1lx5q + 4.70 log m + 7.66 log M2. (7)

Two concerns are raised here. Are the amplification factors which dominate the failure effect

adequately modeled? How do other links fit the data?

Plots of data can shed light on the first question. The numbers in Figure 4 represent the

effect of the amplification factor averaged over the other factors for the opens data. There is

no indication of interaction between control and amplification factors. So the term g in (3)

is set to be a constant. Same conclusion is obtained for the shorts data also. Thus, a simple

model is chosen for both shorts and opens:

f(p) = λ(X,M) = λ(X) + βh(M). (8)

For consistency of notation with the rest of the paper, the variable, exposure energy, is

denoted by x6 instead of m.

Table 5 gives the AIC, number of parameters and deviances of models with differnt

link functions. For numerical stability, the parameters a, b, and c in the function h(M) =

exp(−a(M − b)c) are restricted to lie in the range [−100, 0], [0, 3] and [−20, 0] respectively.

The model Clolog-JW is suggested by Joseph and Wu (2004). Other models are built by
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using the proposed strategy. Clearly models (6) and (7) are not good enough because of

the high AIC (and hence high deviance). The proposed procedure provides better models

in all three links. The cloglog link for opens and the logit link for shorts have the lowest

AIC. There is not much difference in terms of AIC between cloglog and logit links. Thus, if

the same link should be used for both opens and shorts data, one may pick either cloglog or

logit.

The following model is selected for opens:

log log
1

1− p
= −2.63− .82x5l − .34x6l + .28x8l − .27x8q + .15x6q

+.24x1l + 1.06x5lx6l − .38x1lx6l − 5.27e−1.36(M1−3)−1.16

. (9)

The order of the terms in the model is the order in which they are selected by the regression

procedure. The fitted values are plotted in Figure 4, which shows a reasonably good fit to

the data. Comparing models (6) and (9), the surface preparation (x2) is selected in model

(6) but not in model (9). Model (9) also selects ORP (x8) as an important factor with linear

and quadratic effects which were absent in model (6).

The following model is selected for shorts:

log
p

1− p
= −1.86 + .96x6l + .47x1l − .18x7l + .29x6q + .25x4l

−.24x1lx7l − .45x4lx6l − .31x1lx4l − 715.18e−5.52(M2−3)−.09

. (10)

Comparing models (7) and (10), developer speed (x7) is selected in (10) but not in (7).

Moreover, the interaction terms are completely different. This indicates that the proposed

procedure provides more information about the factor effects which was missing in Joseph

and Wu (2004).

Example 2. OL PCB Experiment

The plot of opens data shown in Figure 5 suggests that after the logit transformation

only factors x5 and N have interaction with the amplification factor. The cloglog and probit

transformation plots, which are not shown here, lead to similar results. Thus, the function
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Figure 5: Example 2. Failure probability with a logit transformation for opens. Numbers

correspond to the average of factor levels. Lines are the fitted values by the logit link model

including the noise factor.

g in (3) is chosen to be β1X5 + β2N + β3. Then the model for opens becomes

f(p) = λ1(X, N) + (β1X5 + β2N + β3)h1(M1).

Similar analysis done on shorts data shows that the amplification factor has no interaction

with the control factors but has strong interaction with noise factor. Hence the function g

is chosen to be β1N + β2. Then the model for shorts becomes

f(p) = λ2(X, N) + (β1N + β2)h2(M2).

The following cloglog and logit models ((11)and (12)) are selected for opens and shorts,

respectively:

log log
1

1− p
= −3.71 + 2.19x5l − .74N − .48x7l − .32x6l + .55x4l + .14x3l − .07x4q

+.25x7lN + .26x6lN − .43x5lN + .21x3lN − .29x4lx6l + .22x3lx5l

+.15Nx4q + .21x5lx4q + .06x7lx4q

+(−2.09x5l + .66N − 2.56)e−39.54(M1−1.85)−5.69

, (11)
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Table 6: Analysis of example 2

Data Link (Eq. #) AIC Size Deviance
Opens Cloglog (11) 266.33 20 220.33

Logit 288.28 19 250.28
Probit 311.18 22 267.18

Shorts Cloglog 243.34 16 211.34
Logit (12) 238.29 17 204.29

Probit 249.61 17 215.61

log
p

1− p
= −.92 + .54N − .47x5l − .27x7l − .28x4l + .19x3l + .17x3q + .19x1l + .30x8l

−.16x7lx3q + .19x5lN − .10Nx3q + .09x1lx3q − .08x5lx3q − 07x7lN

+(.31N − 3.77)e−100.00(M2−.59)−3.58

. (12)

For comparison, we repeated the analysis using the models recommended in Joseph and

Wu (2004). In their models a cloglog link was used for both opens and shorts with h(M) =

log M and g equal to a constant. The resulting AIC was 486.7 for opens and 272.9 for

shorts, both much larger than the AIC of our models (see Table 6). This clearly shows the

superiority of the proposed modeling strategy.

Optimum Settings

Optimizing on shorts and opens separately may lead to conflicting levels for the factors.

One approach to overcome this problem is to use a loss function to combine the two responses.

We propose two loss functions:

c1λ1(X, N, M1) + c2λ2(X, N, M2) (13)

and

c1p1(X, N, M1) + c2p2(X, N, M2) = c1f
−1
1 (λ1(X, N,M1)) + c2f

−1
2 (λ2(X, N, M2)). (14)

15



The first one is a weighted sum of link functions and the second one is a weighted sum of

probabilities. The former is appropriate if the same link function is used for both models,

whereas the latter is appropriate if the link functions are different. The weights c1 and c2

can be chosen depending on the importance of the two responses. It is easier to determine

the weights in (14), because the weights are directly related to the costs of rejection and

rework. In the case of inner layers (example 1), both shorts and opens are equally bad, and

thus we take c1 = c2 = .5. In the case of outer layers (example 2), most of the shorts can

be reworked whereas very few of the opens can be reworked. Therefore PCBs with opens

will be rejected leading to greater loss. Engineers suggested that the loss due to five shorts

can be considered as equivalent to the loss with one open. Therefore, we take c1 = 5/6 and

c2 = 1/6.

Optimum settings of the control factors can be obtained by averaging the loss over the

distribution of the noise factors and amplification factors. Because the link functions for

shorts and opens in (9) and (10) are different, we use the loss function based on proba-

bilities. Table 7 gives the optimum settings for Example 1 by taking expectation over the

amplification factors in the range 5 to 7 mils assuming a uniform distribution. Note that

for optimization we adopt only the levels used in production; amplification is applied only

to facilitate estimation. In the table, we have also shown the optimum levels obtained by

Joseph and Wu (2004). They are clearly different from the levels obtained from our models.

Because our models have better fit to the data than theirs, the optimum levels obtained

using our models are expected to be closer to the true optimum.

The optimum settings for Example 2 based on the models in (11) and (12) are shown in

Table 8. It is obtained by averaging over the distribution of noise factor and the amplification

factors, and using the loss function in (14). Again, because the models selected based on the

proposed modeling strategy are better than those selected using the strategy in Joseph and

Wu (2004), the optimum settings obtained here should be better.

Figures 6 and 7 show the estimated failure probabilities. We can see that the failure

probabilities at the optimum settings are substantially lower than that at the existing set-

tings. This indicates that the process capability has been greatly improved through the
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Table 7: Example 1: Optimum settings.

Model x1 x2 x3 x4 x5 x6 x7 x8
Cloglog-JW -1 1 x -1 0.342 -0.399 x x
Cloglog + Logit -1 x x -1 1 -1 -1 -1

Table 8: Example 2: Optimum settings.

Model x1 x2 x3 x4 x5 x6 x7 x8
Cloglog + Logit -1 x -1 .325 1 1 1 -1
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Figure 6: Example 1, failure probabilities. 1=production setting, 2=optimum setting. Left

panel gives cloglog model for opens. Right panel gives logit model for shorts.
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Figure 7: Example 2, failure probabilities. 1=production setting, 2=optimum setting. Left

panel gives cloglog model for opens. Right panel gives logit model for shorts.

experimentation.

Conclusion

FAMe points the engineers and statisticians to an avenue for resolving estimation prob-

lem in situations with low failure rate. In this article we propose a general strategy for

building models with amplification factors. The proposed strategy is illustrated using two

real experiments in PCB manufacturing.

Model selection is done by combining the physical knowledge of the process and the

information from the experimental data. The procedure takes advantage of widely available

GLM software and tunes it to find a nonlinear function of amplification factor through a

model selection criterion, such as the AIC. This strategy can be implemented easily without

heavy burden of programming.

Two types of loss functions, link and probability, are discussed. Link loss function pos-

sesses additive property of factor effects in models from two failures modes. It is easier to

measure the total impact of the factors on the failure rate and thus easier to optimize. On

the other hand, probability loss function provides the flexibility of combining models with

different link functions.

Accurate failure prediction is essential for proper production planning and control. In

PCB manufacturing, the failure prediction is difficult because the design of PCB (line width,
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spacing, etc.) varies with customer requirements (see Joseph and Adya 2001). The models

obtained from the experiment, which are functions of line width and spacing, can be used

for failure prediction. However, because there are various other failure modes, these models

need to be calibrated using actual production data for better prediction.
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