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Research Questions

. Can we infer decision strategies from dynamic
behavioral data?

. Can we detect when people diverge in their
decision making approach?

. Can we classify these inferred decision strategies
based solely on behavioral data?
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Limitations in Human-Al Shared
Mental Models
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Create Shared Mental Model

** Al in human-Al teams often operate with little or no
model of the human’s cognitive state

** We need ‘learning human mental models' that are easy
of an Al system to train and can support
planning/decision-making (Chakraborti et al., 2017)
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Approach to Learning Human Mental
Models of Decision Making

Design an experiment to capture real-world decision making
Capture and classify decision strategies
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Experiment with Geospatial,
Sequential Task

Participants will be assuming the role of a disaster relief planner making
decisions about how to allocate resources prior to and during a storm

The participants will have several heat maps that will aid
in the decision making process overlaid on a US city

The heat maps show gradients of better and worse
locations to place resources

Participants can only
observe one resource
at a time
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Experiment in a Sequential
Environment

Experiment Interface

CEC CDM Experiment

Data sources

Tools
Staging site marker

Decision Surface

Click on the map 1o place the
marker, Drag the marker to

Malrve it

Storm tracks change through time. Each
time a storm track changes the
participant is asked to update their
decision (resource location)

Experiment Features

* 10 timesteps / decision events
* 6 data sources (3-dynamic and 3-static)
* 1 resource placements
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CEC CDM Experiment

Data sources
SocioEco Status
No-go zones
Power Outages
Flooding
Current Storm

Clear

Tools
Staging site marker

Drag the marker your desired
location.
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Administration of Experiment

Experiment Design

Training

Randomizer

Task- Chicago Task- Houston

Task- Houston Task- Chicago

Post
Experiment
Questionnaire

Task Break-down

Output to Experimenter
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Approach to Identifying DM Strategies

Part 1: Label data using Partial Part 2: Reverse analysis to
Least Square Regression classify using Random Forrest
Goal: Goal:
* Use behavior to classify decision * Classify DM strategy
strategies and predict decision * The output of the random forest is the
strategies/mental models of class selected by most trees
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Results

Can we infer decision strategies from dynamic behavioral
data?

Can we detect when people diverge in their decision making
approach?

Can we classify these inferred decision strategies based solely
on behavioral data?
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Diagram of Possible Decision Strategies
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Results: Can we infer decision strategies from
dynamic behavioral data?

. . PLSR Decision Groups - Houston
PLSR Decision Groups - Chicago

35 - 13 S = Storm
S = Storm P = Power
P = Power 26 F = Flood
30 - Eilliloodl " 5L D = Population
= Population E = Socioeconomic
E = Socioeconomic N = No-Go

N = No-Go

Number of Participants

Unknown 1 2 3 4 5 6

Number of Significant Attributes Unknown

2 3 4 5 6
Number of Significant Attributes
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Results: How stable are people's decision
strategies?
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Results: Can we classify individuals into these inferred
decision strategies based solely on observable
behavioral data?

Chicago
Number of Trees: 700
No. of splitting vars.: 10

OOB estimate of error rate: 7.8%
Confusion Matrix:
Analytic Heuristic  Class Error

Analytic 373 27 6.7%

Heuristic 38 394 8.8%
Houston

Number of Trees: 700

No. of splitting vars.: 10

OOB estimate of error rate: 19.1%
Confusion Matrix:

Analytic Heuristic ~ Class Error
Analytic 319 56 14.9%
Heuristic 85 279 24 3%,

COGNITIVE
€C ENGINEERING
CENTER




Implications and Next Steps
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