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Abstract—Human-autonomy teams aim to leverage the differ-
ent strengths of humans and autonomous systems respectively to
exceed the individual capabilities of each through collaboration.
Highly effective human teams develop and utilize a shared
mental model (SMM): a synchronized understanding of the
external world and of the tasks, responsibilities, capabilities, and
limits of each team member. Recent works assert that the same
should apply to human-autonomy teams; however, contemporary
AI commonly consists of “black box” systems, whose internal
processes can not easily be viewed or interpreted. Users can easily
develop inaccurate mental models of such systems, impeding
SMM development and thus team performance.

We seek ways to support the human’s side of Human-AI SMMs
in the context of Al-advised Decision Making, a form of teaming
in which an AI suggests a solution to a human operator, who is
responsible for the final decision. This work focuses on improving
shared situation awareness by providing more context to the
AD’s internal processing. We hypothesize that this will lead the
human to a more accurate mental model of the task and the Al,
which in turn will improve team performance. We manipulate
the human’s situation awareness of the task environment and
measure effects on the shared mental model. A between-subjects,
randomized experiment is conducted in which participants in 6
treatment groups of varying amounts of contextual information
(as a proxy for situation awareness) complete a task with an Al
teammate. We find that improving shared situation awareness
of decision points improves the human’s overall performance,
as well as their understanding of their AI teammate, without
directly explaining the AI’s internal mechanisms. Additionally,
we find that increasing the human’s situation awareness of
task environment and Al teammate reduces over-reliance on the
automated teammate.

Index Terms—shared mental models, shared situation aware-
ness, human autonomy teaming

I. INTRODUCTION

In human-Al teaming, humans are paired with artificially
intelligent “partners” with the goal of leveraging the com-
plementary strengths of each to improve task performance.
However, critical problems arise when partnering with so-
called “black box” systems - those whose decision-making
processes are not easily interpretable by humans [1] - namely,
that it is difficult or impossible to recognize erroneous output,
or to know how to fix such errors. Black boxes are particu-
larly common in recommender systems where the model or
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algorithms underlying the artificial intelligence (Al) is often
hidden from the human teammate [2], [3].

The field of explainable Al (XAI) aims to address this
barrier by providing explanations of a system. The most
common types of explanation are global explanations, which
explain the behavior of the model as a whole, and local expla-
nations, which offer a specific explanation for that specific set
of decision parameters. An example of a global explanation
would be a full set of heuristics or rules used to classify inputs
into outputs, while a local explanation might offer a specific
rule or set of rules used to map the input to output [4]-[6].

Both approaches are under active study and carry limita-
tions. Explanations can take many forms [5], and there is no
consensus on what qualifies as a good or effective explanation.
For some Al algorithms, explanations can be straightforward,
such as displaying a decision tree or providing the features that
triggered the decision. For other algorithms, such as deep neu-
ral networks, the sheer volume of parameters and nodes used
by the algorithm makes extracting a straightforward human-
like explanation from them very difficult. Additionally, the
explanation given to the human is only useful if it is relevant
to their existing mental models, and only if it succeeds at
increasing the human’s understanding. The given explanation
needs to be communicated at a level of abstraction that makes
sense to the individual user.

In joint human-Al decision making tasks, utilizing a black
box Al can lead to satisfactory results if the decision problem
is well-characterized and simple, or if the human is an expert
in the task. However, this black box approach may fail in
more complex settings. In these cases, when the result of
the decision is unsatisfactory, or at worst, catastrophic, there
are no mechanisms or structures in place to understand why
that decision was made. Since algorithmic transparency is
necessarily limited, we turn instead to naturalistic decision
making (NDM) literature, which considers the decision event
itself less important than the perception and judgment efforts
leading up to the decision, and to shared mental model (SMM)
theory. The team’s SMM is a representation shared by all
teammates of the task at hand and the roles, responsibilities,
and capabilities of each teammate. Part of this includes having
shared situation awareness (SSA) which can be defined as
“a shared understanding of that subset of information that



is necessary for [every teammate’s] goals” [7]. We propose
bolstering the human’s mental model of their Al partner by
supporting their cognitive process of judgment/orientation in
the decision making process. We hypothesize that providing
judgment support in this way will improve SSA between the
teammates, which in turn will impact overall performance.

II. BACKGROUND
A. Shared Mental Models

Mental models [8] are internal representations of how and
why a phenomenon occurs. People create mental models of
complex systems as a part of interacting with them [9].
Following from this is the concept of shared mental models
[10]: mental models that are held in common across multiple
individuals that serve to support a shared task. The key finding
from SMM literature is that if human teammates have similar
mental models of their shared task and of each other, then
they are able to accurately predict their teammates’ needs
and behaviors. SMMs enable high-performing teams in which
everyone understands and anticipates the work of others in
the team. Teammates make decisions based on a common
understanding of the state of the world which affects team
performance.

Some work has applied this concept analogously to human-
Al teams, seeking to foster mutual task-and-teammate under-
standing between a human and an Al [11]. Work to improve
the human’s mental model of the Al [12] and vice versa [13]
is ongoing, yet there are few empirical studies that attempt
to quantify the development and effects of SMMs on human-
autonomy teams. An exception is Hanna and Richards’ study
which directly correlates the effects of trust and commitment
to SMM development in teams of humans and intelligent
virtual agents (IVAs) [14]. Better shared mental models are
found to positively correlate with human trust in their artificial
teammate. Teammate trust is also found to significantly corre-
late with task commitment, which is found to significantly
correlate with improved team performance. However, these
measurements were made via subjective self-assessments of
SMM quality. Indeed, because of the difficulty of eliciting
and measuring a human-Al SMM, little research on this front
has attempted to establish objective, quantitative links.

B. Al Driven Recommender Systems

Decision Support Systems (DSS) are a common application
of Al in various industries. They are designed to assist
operators in decision making tasks by either simplifying the
decision space or generating potential solutions to reduce the
burden on human decision-makers. Recommender systems are
a subset of DSS in which the Al recommends a coarse of
action for some decision that needs to be made. The process
of decision making has been modeled in several ways [15]-
[17], but for the purposes of this paper, we will focus on
the well-known OODA loop [18] which models the following
cognitive processes:

o Observation: the collection of data through sensory per-

ception

o Orientation: the analysis and synthesis of data to form
one’s current mental perspective

e Decision: the determination of a course of action based
on one’s current mental perspective

o Action: the physical playing-out of the decision

The field of naturalistic decision making (NDM) focuses
on understanding, modeling, and improving how people make
decisions and perform cognitively complex functions (such as
observing and orienting) in demanding, real-world situations.
Several works within NDM have shown that context and
spending sufficient time and energy on the process of orienting
or judging relevant information is influential to the decision
part of the decision-making process [19]-[21].

In Al-advised decision making tasks, the Al is responsible
for the Observing and Orienting parts of the loop, and can
also be used in the Decision part: The AI gathers relevant
information (Observe), and uses that information to generate
possible solutions (Orient) or a judgement of the decision
that needs to be made (Decide). The human’s role is mainly
that of a safety checkpoint; the final decision (Decide) and
implementation (Act) is the operator’s responsibility. However,
a black box AI prevents appropriate understanding of what
information the Al is observing, and how the Al orients that
information to produce its outputs. Because the human is
not present in the Observation and Orientation parts of the
decision-making loop, this prevents a successful convergence
of SSA and thus, the SMM.

III. METHODOLOGY

We conducted a between-subjects experiment in which
participants were asked to complete a decision making task
using an autonomous decision support system. We manipu-
lated the participants’ situation awareness of the task envi-
ronment and measured effects on the shared mental model
between participants and their Al partner and on the final task
performance. Participants were recruited through an online re-
cruitment platform (Prolific, www.prolific.co). The experiment
was conducted online and collected data from 90 participants
(20 male, 70 female, ages 18-65). Participants were assigned
randomly to a treatment and the order of scenarios shown to
participants was balanced.

A. Task Domain

Participants took the role of the commander of a craft
in Mars orbit, charged with finalizing the entry, descent,
and landing (EDL) trajectory of a probe to a landing site.
They were aided by an Al Mission Computer that made
a parallel evaluation of the proposed trajectory and offered
agreement or disagreement with the participant’s decision; the
participant had the final call on whether to execute or abort
the mission. There were no time constraints on the task. For
control and reproducibility, though the system was presented
to participants as “intelligent”, its responses in each scenario
were predetermined and fixed.

The task is outlined in Fig. 1. First, the team (human
participant and Al Mission Computer) independently assessed
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Fig. 1: Task Outline for EDL Trajectory Planning

the current state of the world, considering three factors: Orbital
positions of GPS satellites, the locations of dust storms, and
the atmospheric entry angle determined by the craft’s current
orbital state. The team evaluated whether the present world
state permits a suitable landing (first decision point represented
by the yellow diamond).

Then, the Al Mission Computer used the world state condi-
tions to generate a possible trajectory for the probe’s landing.
The team was shown a set of six figures of merit that assessed
the proposed flight plan: velocity vs. altitude; heating rate,
heat load, and acceleration vs time; latitude vs. longitude;
and landing confidence. These charts were shaded to indicate
safe, risky, and dangerous thresholds, and the participants were
instructed how to interpret each. Using the figures of merit,
the team individually evaluated whether or not to execute
the landing trajectory (second decision point represented by
yellow diamond). The AI Mission Computer decision was
made known to the participant after they had made their own.
The participant made the final decision on whether to execute
or abort the mission in light of the AI’s recommendation (third
decision point represented by yellow diamond).

B. Experiment Design and Task Procedure

The study included two independent variables: World State
Awareness (3 levels) and Trajectory Awareness (2 levels).
The study was designed as a 2x3 between subjects design.
Participants were assigned to a single treatment which was a
one of six combinations of the World State Awareness and
Trajectory Awareness.

1) World State Awareness Assessment: For this independent
variable the team separately evaluated how risky the world
state was (risky conditions vs safe conditions) in that scenario.
The World State Awareness variable had 3 levels: Observation-
Only, Interactive, or Absent altogether. The Absent mode was
our control group, and in it participants were not given any
information about the world state. This lack of information
mimics current black box systems, and participants started
directly at the Trajectory Evaluation phase of the experiment.
In the Observation-Only mode, participants viewed the three
information screens. They were not prompted for any further
engagement with the information. In the Interactive mode,
participants viewed the world state information screens and
were asked a multiple-choice question about each component,
such as “Which satellite is closest to Mars?”” and “How are the
weather conditions near the landing zone?”. These questions

were intended to increase the participant’s situation awareness
by forcing them to actively process each information source
to minimum degree.

After viewing and/or answering the question on each tab,
participants were asked if the world state conditions were
risky or safe enough to attempt a landing. The AI Mission
Computer prepared its own answer to the same question.
For implementation purposes, these responses were fixed a
priori. The participant was then informed of the AI’s judgment
of the world state conditions (and thus whether they are in
agreement). Then the trial proceeded to the next phase.

2) Trajectory Awareness Assessment: For this independent
variable, a landing trajectory was presented and the team
evaluated whether or not to execute it. Participants were
shown a spread of six figures of merit that characterized the
proposed flight plan. The Trajectory Awareness variable had 2
levels: Observation-Only or Interactive. In the Observation-
Only mode, participants reviewed the six figures of merit
for the Al-suggested trajectory and made an execute/abort
decision. In Interactive mode, participants were additionally
asked to mark each of the six figures of merit as “Good”,
“Bad”, or “Maybe” according to that chart’s specific risk
factors. After observing (and possibly interacting with) each
of the trajectory charts, participants were asked to decide to
execute or abort the mission. As in the World State Evaluation
step, the Al Mission Computer offered its own evaluation after
participants gave their answer, and participants were asked
again to make a final decision.

C. Experiment Procedure

Participants were asked to complete a consent form, given
a pre-experiment questionnaire to establish their baseline trust
in automation [22], and assigned to one of six experimental
treatments. Instructional videos, tailored to each treatment,
introduced participants to the task and the AI Mission Com-
puter. No particular task-relevant experience was assumed.
Participants completed six practice rounds of the mission
planning task. They were required to meet a specific standard
of performance in order to proceed past the practice rounds.
Sufficiently performant participants proceeded to complete
10 trials of the mission planning task. Finally, participants
completed two final questionnaires: 1) TLX workload [23] and
2) i-THAU trust assessment [22].

D. Experiment Considerations and Limitations

The “AI” behavior utilized in this version of the study
is fully predetermined, with certain inputs (world state con-
ditions) mapped to outputs (trajectory charts). To simplify
analysis, the AD’s suggestion is correct 100% of the time.
This conflates team agreement with task performance, and as
these two metrics are not realistically equivalent and 100%
correct performance from Al is unlikely, future versions of
the experiment will have less than ideal AI. Additionally,
participants are assumed to have little to no experience in a
Martian EDL mission planning task. In a real-world scenario,
it is reasonable to expect that the human responsible for



executing a mission of this nature would have moderate to
expert experience and qualifications suited to this domain.

E. Measures

First, we recorded the agreement between the participant’s
and the AI’s initial judgment of the world state conditions and
between their initial decisions of whether or not to execute the
proposed trajectory. This served as a crude measure of the final
shared situation awareness (SSA) between the participant and
the AL If human and AI agree on their understanding of the
world state (risky/safe) and agree on their initial judgement
of what decision to take (abort/execute) then they have high
SSA, since they have a highly shared understanding of the
subset of information that is necessary for their goals. This was
rolled up per participant basis across all 10 scenarios. Second,
we recorded the final agreement state between the human
and the AI after the AI's recommendation to execute/abort
was revealed. Third, we recorded the number of decisions per
participant that changed between initial and final decisions and
from there computed the percentage of initial disagreements
that were resolved. Fourth, for the interactive treatments, we
checked that the understanding of the human matched the
understanding of the Al

Additionally, responses were recorded from the three sub-
jective questionnaires. The pre-experiment questionnaire was
an i-THAu trust assessment, in which participants rated a
series of statements about their Faith in Persons and Faith
in Technology on a seven-point Likert scale from [-3:3].
A composite average of their answers informs their overall
dispositional trust in these two categories. The first post-
experiment questionnaire was an unweighted NASA TLX
workload assessment, which measured overall workload. The
second was the remainder of the i-THAu trust assessment
in which participants responded to a series of statements
about their experience of working with the automated system,
on the same Likert scale. For both i-THAu assessments, a
rating of -3 indicated a lack of trust— the subject didn’t
trust people/technology or depend on the AI to help them
with the EDL task, or they didn’t understand the role of the
Al Conversely, a rating of 3 indicated high levels of trust,
dependence, or understanding.

IV. RESULTS

We first assessed the shared situation awareness of the two
teammates (yellow diamond 2 in Fig 1). Figure 2 shows the
percentage of the initial agreement between the participant
and the AI during the World State Evaluation (WSE) and
Trajectory Evaluation phases. Those who did not receive world
state information tended to be in agreement with the Al
Mission Computer 60% - 85% of the time. Once world state
information was introduced, the participant and Al Mission
Computer tended to agree 80% - 95% of the time, and the
variation was reduced. This indicates that being aware of the
decision environment (the world state conditions) increased the
shared situation awareness about the specific decision task, i.e.
trajectory evaluation.
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Fig. 2: Final Shared Situation Awareness [%] Between Human
and AI During Evaluation Phases

TABLE I: ANOVA for Final SSA

df, error F P
WS Awareness 2, 82 10.425 0.0001
TrajAwareness 1, 82 2.960 0.0891
Faith in Tech 1, 82 0.250 0.6181
Faith in Persons 1, 82 0.596 0.4424
WS-A:Traj-A 2, 82 0.650 0.5248

To determine the significance of the relationship, we per-
formed a linear mixed effects analysis of the relationship
between the initial decision agreement between the participant
and the AI Mission Computer (before the AI’s decision was
revealed) and our independent variables. The fixed effects were
the World State Awareness, Trajectory Awareness, the average
dispositional trust in people and the average dispositional
trust in technology. We also included an interaction effect
between World State Awareness and Trajectory Awareness,
and intercepts for subjects as a random effect. Table I presents
the analysis of variance (ANOVA) for the fitted linear mixed-
effects model. The results indicate that the World State
Awareness is statistically significant in predicting the initial
agreement between the participant and Al. No other effects
were significant.

A well known challenge in human-automation/Al teams
is that humans can often over rely on their computational
teammates. Figure 3 shows the percentage of the team’s
final agreement after the AI reveals its decision and the
participant makes the final call on whether to execute or
abort the mission (shown as yellow diamond 3 in Fig 1).
The average final agreement was approximately 90% for all
levels of World State Awareness but the variance decreased
as World State Awareness increased. We performed a linear
mixed effects analysis of the relationship between the final
decision agreement between the participant and the Al and
the aforementioned independent variables. We then conducted
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an ANOVA on this model (Table II). None of the fixed effects
were statistically significant in predicting the final agreement
between the team.

TABLE II: ANOVA for Final Agreement

df, error F P
WS Awareness 2, 82 0.076  0.9265
TrajAwareness 1, 82 1.844 0.1782
Faith in Tech 1, 82 0.357 0.5518
Faith in Persons 1, 82 0.483 0.4888
WS-A:Traj-A 2, 82 0.030 0.9706

Looking at the data another way, Figure 4 depicts the
percentage of times the participant reconsidered their initial
decision to align with the Al after seeing what the Al sug-
gested during the evaluation phases. We performed a linear
mixed effects analysis of the relationship between this gap
in agreement between the teammates and the aforementioned

TABLE III: ANOVA for Resolved Team Dis-

agreements
df, error F P
‘WS Awareness 2, 82 18.95 <0.0001
TrajAwareness 1, 82 0.408 0.5244
Faith in Tech 1, 82 0.004 0.9508
Faith in Persons 1, 82 0.933 0.8565
WS-A:Traj-A 2, 82 1.183 0.3115

independent variables. We then conducted an ANOVA on this
model (Table II). The results indicate that the World State
Awareness is statistically significant in predicting when the
participant will change their decision to align with the AI’s
suggestion. No other effects were significant. Based on Figures
3 and 4, we can see that those who did not have access to the
world state conditions had a tendency to over-rely on their
Al partner to make the correct decision, while those who did
observe or interact with the world state conditions had higher
initial agreement with the Al in the first place.
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Fig. 5: Composite Results of NASA TLX Questionnaire

To determine if adding the extra tasks of allowing or
requiring participants to be aware of the world state and trajec-
tory assessments, we conducted a subjective mental workload
assessment (NASA TLX) at the end of the experiment. Figure
5 depicts the results of the NASA TLX questionnaire. For all
metrics except perceived performance, higher values indicate
a higher workload on the participant. For perceived perfor-
mance, higher values indicate a better perception of their own
performance. Overall, increasing the participant’s situation
awareness required more effort of them but ultimately was less
frustrating and resulted in increased perceived performance.
Results also show that those who interacted with the figures
of merit (as opposed to merely observing them) during the
Trajectory Evaluation phase tended to experience more mental
demand and frustration, and perceived themselves as less
successful in their performance.



V. DISCUSSION

The results of this study indicate that increasing the human’s
awareness of the task environment improves their agreement
with their Al partner. Since agreeing with the Al was equiva-
lent to performing correctly, this means that providing world
state information increased shared situation awareness (Fig.
2) and improved team performance. Additionally, while the
final agreement was around 90% for all levels of World State
Awareness, the variance decreased as World State Awareness
increased, indicating that more people tended to agree with
the Al and perform successfully as their situation awareness
increased. We also found that those who did not have access to
the world state conditions had a tendency to over-rely on their
Al partner to make the correct decision (Fig. 4). Additionally,
the NASA TLX data indicate that, even if including the
human in the Observation part of the decision making process
required more effort on their part, it ultimately made their task
less frustrating and raised their own confidence in their ability
to perform the task. Based on these results, we can see that
providing contextual information to the human and including
them in the Observation stage of the decision making process
can increase overall team performance and decrease over-
reliance on automation without much added workload. This
should generalize to any domain in which the decision maker
is assisted by an Al that offers solutions, so that they have
context for the solutions which helps the human’s Orientation
process.

In an effort to support the evaluation of a suggested course
of action, we introduced an interaction component during the
Trajectory Evaluation phase. However, we found that making
sure humans understood the “goodness” of the suggestion did
not improve their performance significantly nor did it improve
shared situation awareness between the teammates which may
contradict existing literature. In fact, we see from NASA
TLX data that the interaction component tended to yield a
worse user experience than merely observing the trajectory
characteristics.

VI. CONCLUSIONS

This work is the first in a series of studies that will
investigate different elements that can increase shared situation
awareness and the effects SSA has within a human-AlI mission
planning system. This specific study varies the amount of in-
teraction the human has with the task environment to increase
the human’s understanding of the task and their Al partner.
Introducing transparency of the information that the Al uses to
generate trajectories improves the shared situation awareness
between the human and the AI (Fig. 2). While increasing
transparency into the mission planning system by including
the human in the observation part of the process increased
the agreements between the human and Al (Fig. 2), improved
human robustness to overreliance on automation (Fig. 4), and
impacted the participants’ experience (Fig. 5), there was no
significant improvement in the final team performance (Fig.
3).
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