Consideration of Strategy-Specific Adaptive Decision Support

Sarah Walsh Dr. Karen Feigh

GEORGIA INSTITUTE OF TECHNOLOGY

Improving AI-Advised Decision Support

lech

Decision Making Strategies

Analytic: seeks to weigh all the available information to identify an optimal solution

Analytic and heuristic styles are treated as opposites on the continuum of decision making strategies Heuristic: Uses only a subset of "necessary" information to make "good enough" solutions that may not be optimal

Option-wise v. Attribute-wise Decisions

Analytic: Option-wise

Analytic strategies are generally slower, more complex, and are highly dependent on working memory capacity

Option 1	Option 2	Option 3
Attribute 1A	Attribute 2A	Attribute 3A
Attribute 1B	Attribute 2B	Attribute 3B

Heuristic: Attribute-wise

Heuristic strategies ignore parts of the information, with the goal of making decisions more quickly, frugally, and/or accurately than more complex methods

Option 1	Option 2	Option 3
Attribute 1A	Attribute 2A	Attribute 3A
Attribute 1B	Attribute 2B	Attribute 3B

Both types of decision strategies have been shown to be accurate and effective

EXPERIMENT: PROVIDING A STRATEGY-BASED DECISION AID

- RQ1: What form of decision aid (heuristic or analytic) improves performance (accuracy, effort, time to complete)?
- RQ2: Does decision support that aligns with natural decision strategy improve performance over strategy-aid mismatch?

Experiment Design

Assess benefits of altering aid based through performance and workload

Part 2: Invite only

Participants

Number of participants

♦Part 1: 178 participants

- ♦Part 2: 90 participants
- 40% male and 60% female
- Ages of participants ranged from 19-76 years old with a median age of 31.

All participants spoke English, resided in the U.S., and reported no color blindness.

Disaster Relief Experimental Environment

Decision Aid Breakdown

Heuristic Decision Aid

- Attribute space reduction from 6 to 3
- Decision Space = 300

Analytic Decision Aid

- Option space reduction from 100 to 50
- Decision Space = 300

No Decision Aid-Control

- Decision Space = 600

Approach to Identifying Decision Making Strategies

- Label data using Partial Least
 Square Regression: Relate
 performance data to
 behavior data
- Goal: Use behavior to classify decision strategies and predict decision strategies of participants

Partial Least Square Regression Setup

Behavior is a function of your decision-making process

→ Y = F(X) ←

Behavior

- % Time on Power
- % Time on Flood
- % Time on Storm
- % Time on Population
- % Time on No Go Zones
- % Time on SES
- Total Time
- # Clicks on Power
- # Clicks on Flood
- # Clicks on Storm
- # Clicks on Population
- # Clicks on No Go Zones
- # Clicks on SES
- Total Clicks

PLSR Output

 Coefficients for each participant indicating which resources are most likely to correspond to their observed behavioral data

Decision Choice

- Utility on Power Map
- Utility on Flood Map
- Utility on Storm Map
- Utility on Population Map
- Utility on No Go Zones Map
- Utility on SES Map

Part 1: Classifying Decision Strategies

Heuristic Strategy

• 1-2 Significant Attributes

Mixed Strategy

• 3 Significant Attributes

Analytic Strategy

• 4-5 Significant Attributes

Number of Significant Attributes

Change in Accuracy: Aid v. No Aid

Change in Decision Making accuracy from Part 1 to Part 2

- There was no improvement (p=0.5) between Part 1 and Part 2 by participants that were not given an aid
- An ANOVA showed that there was significant improvement (p=0.0059) in decision making accuracy from those participants that were given a decision aid in Part 2

Georgialnstitute of **Tech**nology*

Effect on Effort (Time, Mouse Clicks)

- Time to Complete: An ANOVA showed decision aid does impact (p=1.7e-6) time to complete
- Mouse Clicks: An ANOVA showed decision aid does impact (p=3.99e-5) number of mouse clicks

Effect on Performance

- Performance: 'mixed' strategy participants performed significantly better by over 8% (p=0.0485) between trials compared to the 'analytic' strategy when no aid was given
- This indicates that the decision aid can boost performance of the lowest performers to bring them up to the performance standard of the other strategy groups

Key Take-aways: Implementing a Decision Aid

FASTER DECISIONS

IMPROVED ACCURACY OF LOWEST PERFORMERS

LESS EFFORT- FEWER MOUSE CLICKS

However, these findings were strategy independent

Consideration of Strategy-Specific Adaptive Decision Support

Sarah Walsh Dr. Karen Feigh

GEORGIA INSTITUTE OF TECHNOLOGY