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Abstract

Rapid developments in Artificial Intelligence (Al) are bringing increasingly complex autonomy capa-
bilities to the cockpit. Autonomous electric Vertical Take Off and Landing aircraft, swarms, Collab-
orative Combat Aircraft, and other new aviation mission constructs are on the horizon. In the last
few decades, military and civil aviation have achieved remarkable safety and effectiveness thanks
to automation and a deliberate focus on teamwork. As automation gets replaced by autonomy, the
challenges of automation could be exacerbated. Effective Human-Al teaming requires both collabo-
rative task work and teamwork which will be critical for continued safety and mission effectiveness.
Despite the incredible ability of expert operators to make exceptional judgment calls in highly stressful
situations, humans suffer from cognitive biases that may pose a challenge to this teaming. Al brings
incredible data processing capabilities to the team but can suffer from a lack of adaptability to its
environment and teammates, particularly in collaborative settings. As pilots retrain Crew Resource
Management for their new Al mates, Al will also need to learn to adapt to its human mates. System
developers can help achieve effective human-Al teaming by providing bidirectional transparency
through interface design and system features such as status, feedback, planning mechanisms, and
engagement prompts.

Introduction

Al is coming and it is going to be enmeshed in every part of Air Force operations, including inside
the cockpit. The field of Atrtificial Intelligence (Al) has gone through several booms and busts since

it first surged in the 1950s and weathered the first Al Winter in the 1970s. Over the decades since,
Al has benefited from exponential growth in computational power and storage over the decades, as
predicted by Moore’s law. Developments in algorithm design, computer engineering, networking and
other related fields have led to cloud computing. This and sustained research in machine learning,
reinforcement learning, natural language processing, and computer vision have enabled the latest
boom that has brought Deep Learning Al to everyday consumers.
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The Air Force is investing heavily in the development of Al-enabled aircraft. In his keynote speech at
the 2023 Air Force Association (AFA) Symposium, the Secretary of the Air Force unveiled a plan to
build and deploy a thousand Collaborative Combat Aircraft (CCA) in the near future [1]. These Al-en-
abled CCAs will be designed to team with fifth and sixth-generation fighter aircraft and perform a
range of different missions — from carrying electronic warfare pods to forward deploying weapons and
other sensors. Beyond the immediate vision of CCA, the core enabling autonomy technologies will
usher in the realization of additional human-Al missions such as autonomous refuelers, Al copilots,
remotely piloted swarms, and other sophisticated forms of airborne robotics.

The field of robotics has learned over the years that Al, computer vision, mechanics, and controls
alone are not sufficient. System developers must take into account how people actually do their work
for systems to be safe and effective. Just as universities like Georgia Tech teach Human Robot Inter-
action (HRI) as a fundamental part of robotics, the Air Force should build foundations of human-cen-
tric design and human systems integration into its autonomous aircraft development.

This article aims to start conversations about interface design and software practices requisite for
safe and effective human-Al teaming in aviation. In the article, the terms Al, autonomy, and robots
are used interchangeably to represent agents that can sense, decide, and act independently without
human input.

Al in the Cockpit

: N - . As Al inevitably finds its way into the cockpit,
ol g | B . automation that we've come to rely on in the last
= 4 ‘ ' ! few decades of aviation for improved safety and
efficiency will be replaced by autonomy. Aircraft
manufacturers, like car manufacturers and other
sectors already have, are keenly looking at ways
to take advantage of the latest developments in
Al. The requirements of cockpits and avionics
systems being more stringent than enterprise sys-
tems will certainly impose constraints and require
adaptation. In the airline transport sector, manu-
facturers and airlines are exploring ways to use Al
to reduce the crew requirements from two pilots
to single pilot operations [2]. In the Remotely
Piloted Aircraft (RPA) sector, the Department of
Defense (DoD) is exploring ways to fly several
aircraft simultaneously with one ground control station crew [3]. In the fighter sector, the Defense
Advanced Research Projects Agency (DARPA) and the Air Force are actively experimenting with
Uncrewed Combat Aerial Vehicles (UCAV), CCAs, and other concepts [4].

Figure 1. Al Generated Image:
Al Pilot in the Cockpit [A].

Human-AlI Interaction

Human-Al Interaction is the discipline that studies, designs, and evaluates autonomy, robotics, and
machine systems for use by or with humans, in various domains. The process of use by or with
humans is called interaction, and there are five attributes that affect the interactions between humans
and Al [5]:
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» Level and behavior of autonomy
» Nature of information exchange

+ Structure of the team

* Adaptation, learning, and training
* Nature of the task

Despite astounding advances in computational capabilities and the complexity of tasks Al can handle,
it still does not work well with humans. It does very well when pitted against humans in tasks with
well-defined constraints and observable environments but not so well when paired with humans in
more open environments. Researchers have developed Al agents that have learned to beat human
experts in complex strategy games like Starcraft, Quake, Dota, Go, and Chess [6] but they do not do
very well when asked to team with humans in simple collaboration games [7]. Carroll et al. and other
researchers [7][8] have found that most Al agents naively assume perfect analytic decision making in
their teammate and behave as if paired with another Al agent, unless explicitly trained with a model of
human behavior.

Both members of the human-Al team are at fault for failures of collaboration. Al can be opaque, inflex-
ible, or brittle, and humans can be too flexible or rely too heavily on heuristics or pattern matching.
The human and the Al will need to learn to adapt to each other [9].

The Al Crew Member

Machines are not new to aviation. In the 1950s, a group of researchers led by Paul Fitts investigated
ways to use machines for more effective air navigation and traffic control systems [10][11]. Fitts,

a former Army Air Forces psychologist, is considered a founder of the Human Factors discipline
[12]. In a seminal report on function allocation published in 1951, Fitts et al. “surveyed the kinds of
things men can do better than present-day machines, and vice versa” [11]. That list of 11 statements
became known as Fitts’ list. The 11 skills surveyed in Fitts’ list are: judgment, improvisation, simulta-
neous operations, speed and power, replication, induction, detection, perception, long-term memory,
short-term memory, and computation. De Winter and Hancock, in 2015, surveyed 2,941 respondents
on each of the statements of Fitts’ list. According to their results, present-day humans consider that
machines surpass humans in simultaneous operations, speed and power, replication, detection, per-
ception, long-term memory, short-term memory, and computation [12] given the following statements:

* Simultaneous operations: “Ability to handle highly complex operations, i.e. to do many
different things at once.”

* Speed and power: “Ability to respond quickly to control signals and to apply great force

smoothly and precisely.”

Replication: “Ability to perform repetitive, routine tasks.”

Detection: “Ability to detect a small amount of visual or acoustic energy.”

Perception: “Ability to perceive patterns of light or sound.”

Long-term memory: “Ability to store very large amounts of information for long periods and

to recall relevant facts at the appropriate time.”

Short-term memory: “Ability to store information briefly and then to erase it completely.”

e Computation: “Ability to reason deductively, including computational ability.”

Data Fusion

Machines are incredibly good at processing large amounts of information as programmed. Thanks to
advances in computing power and algorithms, data fusion capabilities have exploded. Data fusion is
the process of integrating multiple data sources to produce better information than that provided by
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any individual data source. Data fusion is where Al has truly made advancements in accuracy, insight-
fulness, and usefulness.

Brittleness

One thing Al suffers from is brittleness — a concept which refers to Al’s propensity to break, fail, or
produce errors when faced with unexpected inputs or situations. And often, Al fails silently or “halluci-
nates” and confidently generates incorrect or misleading results [13].

Distribution shifts contribute to Al's brittleness [14]. A distribution shift is what happens when Al faces
a real-world situation that is very different from what it was trained for. Types of distribution shifts dis-
cussed in Al literature are covariate shifts, concept shifts, and domain shifts.

Covariate shifts occur when the distribution of the input data changes, but the conditional distribution
of the output expected remains the same. For example, an Al trained to recognize adversary aircraft
on daytime images faces a covariate shift when faced with nighttime images.

Label or concept shifts occur when the distribution of the output labels changes. Say an Al is trained
to recognize military installations in an Area of Responsibility (AOR) or theater of operations by a
specific set of features. If the adversary changes tactics and starts camouflaging their installations or
making them look like civilian structures, the Al faces a concept shift because the features it associ-
ates with military installations no longer match the new reality.

A domain shift would be taking an Al agent trained for a semi-arid desert AOR to a dense jungle AOR
without retraining on the new set of features and signatures.

Hallucinations are when an Al system, usually a Large Language Model (LLM) or other Generative Al,
confidently generates outputs that are incorrect or altogether misleading. It is a phenomenon where
the Al agent perceives patterns that are nonexistent or imperceptible to human observers. The phe-
nomenon is analogous to human hallucinations where one might sometimes see figures or other pat-
terns in clouds. Al hallucinations occur due to errors in data interpretation, incorrect model assump-
tions, or over-fitting to the training data [15]. There can be grave consequences in the military context
if Al hallucinates military targets where none are present.

Figure 2. Al Gener-
ated Image: Ground
Control Station [B].
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Human Awareness

Although Al has learned to beat expert humans in competitive games, research has found that it generally per-
forms poorly when teamed with humans in collaborative games [7]. There are many reasons for this. Some of
the most important are the assumptions Al makes about its teammates and environments when determining its
own strategy. Training of Al, particularly reinforcement learning Al, requires thousands of repetitions or exam-
ples. Since individual humans are rarely able to provide that number of repetitions, Al is often trained against
Oracles (Al or Automated Agents designed to stand in for humans) using Self-play or Population-Based Train-
ing [6][8].

When co-trained with other Al, Al learns to expect predictable, analytic, optimizing decisions from its team-
mate. The behavioral economics, psychology, decision-making fields have shown, however, that humans are not
perfectly analytic in their decision-making. Thus, when an optimal Al competes against a sub-optimal human,
it can exceed expectations. In collaborative settings, however, when this same Al is teamed with a human, the
performance can be drastically worse because it fails to understand and to be understood by the human [7].

The Human Crew Member

According to DeWinter et al., modern day humans consider humans to surpass machines in judgment, improvi-
sation, and induction [12] given the following statements from Fitts’ list:

* Judgment: “Ability to exercise judgment.”
* Improvisation: “Ability to improvise and use flexible procedures.”
e Induction: “Ability to reason inductively.”

Aviators are trained to be cognizant of human fallacies and cognitive biases in aeronautical decision
making (ADM) [16]. When these cognitive biases are checked, humans make for astonishing aircraft
operators who can accomplish extraordinary feats in the most difficult of circumstances — including
sparse information environments. Some of the most celebrated examples of this expert airmanship
include Captain Sully Sullenberger’s landing of U.S. Airways Flight 1549 on the Hudson River.

Table 1. Modern Day Attribution of Fitts’ List [12].

Fitts’ List _ Modern Day

Characteristic Attribution

Statement [11] 112]

Simultaneous operations “Ability to handle highly com- Machine
plex operations, i.e. to do many
different things at once.”

Speed and power “Ability to respond quickly to Machine
control signals and to apply
great force smoothly and pre-

cisely.”

Replication “Ability to perform repetitive, Machine
routine tasks.”

Detection “Ability to detect a small amount | Machine

of visual or acoustic energy.”
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Perception “Ability to perceive patterns of | Machine
light or sound.”

Long-term memory “Ability to store very large Machine
amounts of information for long
periods and to recall relevant
facts at the appropriate time.”

Short-term memory “Ability to store information Machine
briefly and then to erase it com-
pletely.”

Computation “Ability to reason deductively, Machine
including computational ability.”

Judgment “Ability to exercise judgment.” Human

Improvisation “Ability to improvise and use Human
flexible procedures.”

Induction “Ability to reason inductively.” Human

Table 1. Modern Day Attribution of Fitts’ List [12].

Expert Decision-Making

Intuitive decision-making by experts has been studied by multiple academic disciplines since the
1940s [17][18]. There exist many schools of thought on how it works, the pros and cons of so-called
"professional intuition.”

The field of Naturalistic Decision Making (NDM) conducts field studies on subject-matter experts

who make decisions under complex conditions. They have found that some experts are able to “suc-
cessfully attain vaguely defined goals in the face of uncertainty, time pressure, high stakes, team

and organizational constraints, shifting conditions, and action feedback loops that enable people to
manage disturbances while trying to diagnose them” [19]. This ability is often required of aircrews and
has been colloquially linked to intuition and judgement of human beings.

In sharp contrast to NDM, researchers in the field of Heuristics and Biases (HB) favor a skeptical atti-
tude toward expertise and expert judgment. In laboratory experiments, they have found that intuitive
judgments are less likely to be accurate and are prone to systematic biases [19]. It is not that intuitive
judgments are always incorrect, but that the noisiness, inconsistency, and unpredictability of human
judgement could lead to fatal errors in a military mission.

Cognitive Biases & Heuristics

In their aeronautical decision-making training, pilots are taught to recognize and mitigate five haz-
ardous attitudes to aviation safety: antiauthority, impulsivity, invulnerability, macho, and resignation
[20]. These are but a subset of cognitive biases that manifest from the utilization of heuristics that can
affect safety and mission effectiveness.

Cognitive biases are predictable but flawed patterns in people’s responses to various situations. Not
all biases and heuristics are bad. Some cognitive biases and heuristics are adaptive and may lead

to more effective actions in a given context by enabling fast decision-making which can be desirable
when timeliness is more valuable than accuracy. On the other hand, cognitive biases may lead to per-
ceptual distortion, inaccurate judgment, illogical interpretation, or broad irrationality [21].
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Other cognitive biases that can manifest in aviation are expectation bias, confirmation bias, plan con-
tinuation bias, automation bias, and automaticity [21]. These cognitive biases, unchecked, can lead to
hazardous incidents and accidents.

Definition

Expectation Bias When we have a strong belief or mindset
towards something we expect to see or hear, and
act according to those beliefs

Confirmation Bias When we only look for, listen to, or acknowledge
information that confirms our own preconcep-
tions

Plan Continuation Bias The unconscious cognitive bias to continue with

the original plan in spite of changing conditions

Automation Bias when we over-rely on automated aids and deci-
sion support systems, or become complacent in
assuming the technology is always correct

Automaticity when routine tasks lead to an automatic
response without any real consideration to what
is being said or done.

Table 2. Cognitive Biases that can manifest in Aviation [21].

Ironies of Automation

One of the cognitive biases that can ironically lead to hazards in aviation is automation bias. Automa-
tion bias is when we over-rely on automated aids and decision support systems or become compla-
cent in assuming the technology is always correct [21]. When automation is working correctly, people
tend to become easily bored or occupied with other tasks and fail to attend well to automation perfor-
mance. This is one of the ironies of automation from the operator’s view of the system.

From an automation system designer’s view, they may think that the human is unreliable and ineffi-
cient so should be eliminated from the system [22]. There are two ironies of this attitude. One is that
the designer’s own errors can become a major source of operating problems. The other is that the
designer who tries to eliminate the operator still leaves him/her/them to do the task which cannot be
easily automated, often without adequate support [22].

Crew Resource Management

To operate well with Al, human crew members will need to focus on these challenges in their Aero-
nautical Decision Making (ADM) and crew resource management (CRM) training [23].

CRM is a set of training procedures recommended by the National Transportation Safety Board
(NTSB) for improving aviation safety and focuses on situation awareness, communication, leadership,
and decision making in aircraft cockpits. CRM training will need to evolve to prepare human crew
members for integration of Al into the crew.
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Human-Al Teaming

According to the National Academy
of Sciences (NAS), Human-Al teams
can be more effective than either
humans or Al systems operating
alone [24]. Human-Al Teaming is a
necessary construct for the cockpit
gAY j environment as crew cohesion has
‘i | | W% » been akey element of performance

: 5 and safety in both civil and military
aviation. Recognizing the critical role
of crew cohesion, military protocols
even relax rank-based customs and
courtesies to foster seamless team-
work among crew members.

Figure 3. Al Generated Image: Human Al CRM [C].

Al agents have the capacity to offer
a much richer interaction mechanism than automation. With the sophistication of the information
exchange and learning attributes of Al, the interaction paradigm should be changed to Human-Al
Teaming [24]. As the sophistication of Al increases, so does the criticality of the functions it performs.
With increased criticality of the function, consequences of errors can become catastrophic particularly
since Al sometimes fails silently [13]. To help mitigate the consequences of failure, the Al's team-
mates must be familiar with its nominal and off-nominal behaviors.

The challenges humans have attending to automation are also applicable to Al systems, and Al sys-
tems must provide humans a mechanism for [24]:

» understanding and predicting the behaviors of the Al system

» developing appropriate trust relationships with the Al system

* making accurate decisions based on input from the Al system

+ exerting control over the Al system in a timely and appropriate manner.

Transparency

The human-Al requirements enumerated by the NAS study on human-Al teaming point to a require-
ment for transparency [24]. Transparency represents the means of providing insightful information
from the machine to the human operator and vice versa [25]. Achieving transparency can be a chal-
lenging endeavor, particularly as the complexity of the system increases. Transparency involves a
bidirectional process between human and Al for mutual understandability. Joseph Lyons proposes a
two element model of transparency for human Al teams: robot-to-human and robot-of-human trans-
parency [25]. Robot-to-human transparency is information that the system needs to present to users.
Robot-of-human transparency is information on the humans that the robot needs awareness of.

System designers can optimize for transparency by providing system transparency at the design
phase or training the team to operate efficiently and effectively. Four system features can provide
increased transparency: status, feedback, planning mechanisms, and engagement prompts [26].
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Status

Status incorporates the ‘what’ of transparency, by providing the state of the human operator or system
at a particular point in time. Various types of information can be provided in a status to help determine
whether strategy changes by the human operator or Al agent must be initiated to accomplish a task
[26].

Feedback

Feedback incorporates the ‘why’ of transparency by providing explanation, insights into actions,
potential uncertainties, reliability of recommendations, and supplementary information from the
human operator or machine system. Various modalities (visual, auditory, tactile) can be used to pro-
vide feedback and optimize communication within the team [26].

Planning Mechanisms

Planning mechanisms incorporate the ‘how’ of transparency and encompass the allocation of
resources and task assignments among an organization’s members. Planning occurs at all mission
stages and is necessary for the human-Al team to maximize its desired outcomes [26].

Engagement Prompts

Engagement prompts are cues, alerts, or warnings that encourage the human operator’s involvement.
They encompass all three aspects of transparency (what, why, and how) by indicating to the human
operator what must be done to resume the task, why they become disengaged, and how to identify
different strategies that can be implemented to fulfill a task [26].

Al System Design

Earlier, the article discussed how incorrect assumptions by the Al about the human can lead to drasti-
cally poor team performance. To different degrees, these assumptions can be replaced by real-world
information about the human teammates.

Training Paradigms

Al training can be accomplished in various ways. Some paradigms are more human-centric or human
aware. Human-aware training embeds a model of a human inside the training environment. Within
this paradigm, the Al is trained with awareness of the decision-making strategy of the human.

The challenge with Al training is that it requires thousands of examples spanning the full range of sit-
uations the agent may encounter. Since individual humans often are not able to provide the requisite
number of decision-making examples for input to Al training, Al must often be trained against Oracles
— Agents designed to stand in for humans. Oracles can either be designed to mimic humans in spe-
cific, predictable ways (like providing only correct answers 80% of the time) or can be trained using
techniques like Learning from Demonstration (LfD) or Imitation Learning.

Imitation Learning

Imitation learning is a paradigm in which Al acquire new skills by learning from human demonstration
[27]. Behavioral cloning, one of the simplest approaches to Imitation Learning, learns a singular deter-
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ministic policy from several expert demonstrations by directly learning a mapping from observations
to actions with standard supervised learning methods. In this way, the Al can be trained repeatedly
with an Oracle or model representation of human decision-making strategy.

One challenge to using techniques like Behavioral Cloning is that humans exhibit significant individual
differences, i.e. individuals don’t suffer from the same cognitive biases, and don’t exhibit the same
preferences. Another is that, often, humans teach differently based on the kind of feedback the Al

is capable of taking in [28]. A significant challenge for future Al is that it will need to “get to know” its
teammates and adapt to their preferences and ways of accomplishing the mission.

These are outstanding challenges for system designers as they develop Al agents to accomplish the
various future mission constructs that bring Al into the cockpit.

Human-Al Mission Constructs

Mission requirements will determine how Al is implemented in the cockpit. Current crew composition
and structure will form a basis for this evolution from automation to autonomy. The nature of the task,
the type of information exchange required, and the availability of suitable autonomy will determine
how drastic the interaction paradigm will change. This will in turn affect the way human-Al crews are
structured and composed.

Al'ing Betty

Today’s autopilots, voice alerting systems like ‘Betty’, and pilot assistance systems like the Automatic
Ground Collision and Avoidance System (Auto GCAS) may merge and gain additional Al-enabled
autonomy capabilities. In the near future, we may have an Al pilot assistant that collaboratively shares
control of the aircraft with the human pilot during high or low workload parts of the mission.

This paradigm involves collaborative control by one human and one Al agent. This dyad relationship
is the least complex and most studied human-Al team structure, however the task of controlling the
same aircraft will require careful design of the interaction mechanisms.

Lessons learned from aviation incidents caused by mode error in automation should inform design of
transparency features such that the pilot has suitable understanding and situation awareness when
the Al agent is controlling the aircraft. The phase of flight and phase of mission will also be an import-
ant criteria in choosing robot-to-human transparency requirements.

Complementarily, the Al agent should also be aware of its own state, the environment, the phase of
flight, phase of the mission, and the state of its human crewmate [9] in order to be effective. With such
information, particularly information on the beliefs, desires, and intents of the human, the Al can best
adapt its task work and teamwork.

Collaborative Combat Aircraft

The ongoing research efforts into today’s Off-Board Sensor Station (OBSS), Off-Board Weapon Sta-
tion (OBWS), and other programs are working towards the realization of collaborative combat aircraft
[29]. Fighter missions may soon be accomplished with heterogeneous teams of human piloted aircraft
and Al piloted wingmen.

As the number of wingmen increases, so does the cognitive load of managing the formation. Lessons
learned in fighter pilot instruction, and the designated skills required of 2-ship and 4-ship Flight Leads
can serve as blueprints for designing the human-Al interaction in this mission construct. The human
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will be unable to control each aircraft at a low level, so they will learn to command high level behav-
iors and learn to calibrate their expectation of the Al piloted wingmen in each mission scenario.

The Al agent piloting each wingman is going to need to simultaneously work with other Al and a
human(s) in a heterogeneous, multi-agent construct. It is possible that the human crewed aircraft will
be piloted by a human assisted by an Al Betty or two humans executing the role of pilot and Combat
System Officer (CSO). The Al agent will need to learn to interpret commands contextually as the
potential mission scenarios may be too large to explicitly enumerate and may potentially need to
deconflict instructions or actions from the pilot and the CSO.

Remotely Piloted Swarms

The evolution of the Remotely Piloted Aircraft (RPA) mission into a Remotely Piloted Swarm mission
is not too far away. The U.S. Army is already test launching smaller drones from bigger drones. The
Air Launched Effects [30], as they’re called, are controlled by the larger drone and can be numerous.
Current efforts are testing singular digit numbers, but it is envisioned that one day it will increase to
swarm numbers (>50). Swarm control can be a complex task depending on the type, number, and
mission of the swarm [26].

Swarms are composed of large numbers of robots or drones that cooperate to achieve a goal. Swarm
control can be challenging because of human capability limitations, emergent behaviors as the enti-
ties interact with each other and the environment, and constraints on communication abilities. Trade-

offs exist between the number of indi-
vidual swarm entities a human operator
can manage and the duration of time
the human operator can influence the
entities [26].

The majority of human-swarm interac-
tion literature has focused on robot-to-
human transparency through visualiza-
tion types and human operator influence
over a swarm [26]. Research on trans-
parency through visualization types

has investigated the effect of different
displays, latencies, geometries, and
abstraction levels on the human opera-
tor’s ability to perceive, understand, and
predict swarm motion.

Robot-of-human transparency involves
both control interaction and bi-direc-
tional communication. Control can be
achieved through various methods of
conveying operator intent, such as the
use of forms of leader, predator, and
mediator influence mechanisms [31].
As the human monitors status informa-
tion from the swarm, individual swarm
members will need status information
on the human controlled mothership to

Figure 5. Al Generated Image: Drone Swarm [E].
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execute lost link and other communication dependent behaviors in a potentially contested information
spectrum.

Conclusion

We stand on the brink of a new era in aviation. The seamless integration of Al into cockpit operations
and Air Force missions represents not just an advancement in technology, but a fundamental shift in
the paradigm of flight operations. The potential for Al to enhance safety, efficiency, and mission effec-
tiveness is immense, but realizing this potential requires a nuanced understanding of the delicate
balance between human judgment and machine intelligence.

The shift from automation to autonomy requires not just a revolution in task capabilities but also in
interaction and teamwork capabilities. Achieving effective human-Al teaming will require a collabora-
tive effort among engineers, system designers, pilots, and Al developers to ensure that Al systems
are not only capable but also compatible with human operators. This partnership must prioritize
mutual understanding, adaptability, and above all, safety. As Al becomes a more integral part of the
aviation ecosystem, continuous CRM training and adaptation by human operators will be essential. In
turn, Al must undergo continuous learning and adjustment to effectively address issues like brittleness
and hallucination, ensuring its suitability for military missions.

As the landscape of aviation evolves, so too must our strategies, tools, and mindsets. The collective
goal must be to maintain the highest standards of safety and effectiveness, preserving our proud
legacy of aviation while embracing the possibilities of the future. With careful planning, rigorous test-
ing, and thoughtful integration, the synergy between humans and Al has the potential to usherin a
new era of aviation.
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