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SUMMARY 

A theory for the effect of neutral beam injection on 

the transport of impurity ions in a tokamak plasma was 

extended to include the effect of temperature gradients. A 

theory for the effect of neutral beam momentum input on the 

radial heat conduction was also developed. Injection of 

neutral beam momentum in the direction of the toroidal 

magnetic field, called co-injection, was found to reverse 

the normally inward flow of impurities. The theory was 

found to provide a reasonable basis for interpretation of 

impurity flow reversal experiments performed in the 

Princeton Large Torus (PLT), when a multiplicative factor of 

two was applied to the predicted impurity fluxes. 

The model that was adjusted to fit the experimental 

results in PLT was then applied to the Tokamak Fusion Test 

Reactor (TFTR) and to models based on designs of future 

tokamaks. Using the maximum available co-injected beam 

power (16 MW) in TFTR is predicted to lead to a substantial 

reduction (relative to balanced momentum injection) in the 

penetration of impurities to the center of the discharge and 

to substantially increase the impurity radiation from the 

plasma edge. This would possibly lead to a cold, radiating 

edge which would reduce sputtering erosion of the limiter. 

A modest amount (̂ 30 MW) of co-injected beam power is 



xi 

predicted to substantially reduce the penetration of 

impurities to the center of models of the Fusion Engineering 

Device (FED) and the STARFIRE commercial reactor. If these 

plasmas operate with a high edge density, as would be the 

case with a high rate of edge recycling, this amount of 

co-injected power is also sufficient to significantly 

increase the impurity radiation from the edge region, again 

possibly leading to a cold radiating edge and associated 

reduction in limiter erosion. 
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CHAPTER I 

INTRODUCTION 

The tokamak [1] is currently the most highly 

developed magnetic confinement concept. The tokamak 

confines a plasma in a toroidal confinement chamber. The 

magnetic configuration in a tokamak consists of a toroidal 

component produced by external coils and a poloidal 

component produced partially by external coils and partially 

by a toroidal current driven in the plasma. The resulting 

field is helical. Since ions drift upwards under the 

influence of the toroidal field component, the poloidal 

field component is necessary to average out any net radial 

displacement. In present day tokamaks, this current is 

driven by a transformer, limiting the tokamak to pulsed 

operations. 

As tokamaks are developed from pulsed devices with 

operating times of fractions of a second to long-pulsed or 

quasi-steady state devices, it is very important to 

understand the radial movement of non-hydrogen "impurity" 

ions inside the plasma. These impurities cause enhanced 

radiation which, if controlled, could help to control the 

burn. If uncontrolled, the impurities could prevent 
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ignition of the plasma, possibly barring the tokamak from 

becoming a practical fusion power reactor. Also, the 

impurities with their associated electrons take up some of 

the plasma pressure, reducing the system efficiency. 

The purpose of this thesis is to investigate the use 

of neutral beam injection to reduce or reverse the normal 

inward transport flux of impurity ions. The fluid model 

neoclassical transport theory, which had previously been 

developed to treat the effect of neutral beam momentum 

injection, is extended through the fourth moment equation to 

include temperature gradient effects and heat fluxes. The 

extended theory is first applied to analyze experiments in 

current generation machines, and then applied to predict the 

effects of neutral beam flow reversal in future machines. 

The first goal of this thesis is to calculate the 

radially outward rate of particle transport across the 

magnetic field. In a magnetic field, ions move along the 

field lines to within a small excursion. This excursion is 

either the gyroradius (0.001 to 0.01 meter) if collisions 

are frequent in the plasma, or the banana shaped orbit width 

(0.03 to 0.1 meter) of particles trapped in magnetic wells 

if collisions are infrequent. As mentioned earlier, a 

magnetic field line follows a gentle helical path around the 

torus, which varies the field lines distance from the 

tokamak center and therefore the magnetic field strength. 

The varying magnetic field along the particle path forms a 
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magnetic well in which a particle can be trapped. The 

trapped particle executes "banana" shaped orbits since tne 

magnetic gradient and curvature drift is in different 

directions for each leg of the orbit. Trapping is important 

when the time between collisions is long compared to the 

time required for the particle to complete a poloidal 

transit, since frequent collisions prevent completion of the 

banana orbits. 

The field lines form nested, toroidal flux surfaces 

of constant pressure, temperature, and density in a tokamak. 

Excluding field irregularities, the only mechanism for 

driving particle transport across the flux surfaces is 

momentum exchange. Coulomb collisions among plasma 

particles of different species was the earliest form of 

momentum exchange that was recognized to drive particle 

transport across flux surfaces. Since the ion momentum 

exchange in collisions with impurities is greater than ion 

momentum exchange in collisions with electrons by a factor 

of Z / m?/me , where Z is the charge state , ms is the 

impurity mass, and me the electron mass, the ion-electron 

collisions can be ignored when n^Z 1/^ >/ m^/m^ , where n2 is 

the impurity concentration and n̂  is the main ion 

concentration. 

The most basic explanation of particle transport by 

momentum exchange is simple diffusion by Fick's Law. When a 

particle is displaced a root mean square distance of &x in a 
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collision, and the mean time between collisions is <̂ t, the 

flux of particles crossing a plane perpendicular to the x 

direction is approximately IT ^ <£x/*t n, where n is the 

particle density. This flux crosses the plane in both 

directions, leaving a net flux only if a density gradient 

exists. Only the gradient over the range of 5~x is affected, 

leaving the net flux to be 

r 
A* / 

- TXT[Y\ - n 
% - 7 ^ * 

-n — 

TC+T:^^ 

where D is the diffusion coefficient. 

Three theoretical forms for particle transport are 

discussed here. The distinctions among these are mainly 

historical, as all can be included within the same 

framework, although the resulting transport effects differ 

greatly. The three, in order of historical development, 

are: classical, Pfirsch-Schlueter, which introduced toroidal 

geometric effects, and banana plateau, which included 

trapped particle effects. 

The first of these mechanisms, called classical 

transport, is dependent on random walk diffusion with the 

step size being the gyro-radius. This is the limit for 

cross field transport when the magnetic field is straight 

and uniform, as in a long circular cylinder with an axial 

magnetic field. Since the particles are tied closely to the 
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flux surfaces, the displacement in each collision is of the 

order of the gyroradius, and therefore the net particle flux 

is small. The first mention of collisionally driven 

impurity transport was given by Longmire and Rosenbluth in 

1956 [2], They found that classical transport theory 

predicted that impurities would be driven up main ion 

density gradients. The equilibrium impurity profile was 

predicted to be more sharply peaked than the main ion 

profile by a factor of the impurity charge state, 

(n?(r)/ni(0)) ̂  (n^(r )/nx (0)) • The gyroradius of any 

species is proportional to the species momentum 

perpendicular to the magnetic field divided by the species 

charge state. Since momentum is conserved in collisions, 

the diffusive step for each species in a collision is 

proportional to its inverse charge state. Hence, when the 

impurity gradient is its charge state times steeper than the 

main ion gradient, a diffusive balance exists since the 

diffusive step size times its gradient is equal for both 

species. A review by Braginskii [3] in 1965 summarizes 

classical transport. Since the effect of classical 

transport is usually small compared to the other transport 

mechanisms present in a tokamak, classical transport will 

not be treated further. 

Classical transport does not take into account the 

magnetic field gradients and curvature, which give rise to 

particle drifts and thereby to transport across magnetic 
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surfaces. Pfirsch-Schlueter [4] transport is driven by 

collisions between particles on the same flux surface, and 

depends on poloidal particle and heat flows within the flux 

surface. In general, Pfirsch-Schlueter transport leads to 
. z 

an enhancement over classical transport by a factor (l+2q ), 

where q is the safety factor, or inverse rotational 

transform, and varies in value from^l in the center of the 

plasma to /~3-6 at the outer boundary. 

Pfirsch-Schlueter theory was applied to impurity 

transport by Rutherford [5], With the inclusion of first 

order corrections to the particle and heat friction 

coefficients, the possibility arose that the normally 

negative temperature gradients could inhibit or reverse the 

inward impurity flow. The case studied by Rutherford was 

for an impurity mass much larger than the main ion mass, for 

which this temperature screening effect is not predicted. 

Boley, Gelbard, and Stacey [6] extended this treatment for 

an arbitrary number of species. 

The most recently developed theory in this line is 

banana-plateau, or "neoclassical", transport theory, which 

takes into account the magnetic trapping of particles. The 

diffusion displacement step for trapped particles is on the 

order of the banana orbit width, which is much larger than 

the gyroradius, so this mechanism can greatly enhance 

particle transport. Connor [7] and Hinton and Moore [8] 

applied this neoclassical transport formulation to impurity 
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transport theory and predicted, as before, that the main ion 

density gradient would drive impurities inward, but at the 

larger, collisionless rate. The collisionless diffusion 

rate is enhanced over the Pfirsh-Schluter rate by a factor 

of (R/r) , where R is the major radius and r is the minor 

radius. 

To predict the impurity transport in the 

Pfirsch-Schlueter regime, Rutherford had extended the fluid, 

or moment equation approach of Braginskii [3] to obtain his 

results for two species of disparate mass, since the 

geometry effects do not change the classical collisional 

friction or viscosity effects. Trapped particles, on the 

other hand, do substantially change the plasma viscosity. 

Therefore, until recently, the collisionless, or long mean 

free path regime, could not be treated as a fluid. The 

method of solution for long mean free path transport was 

then restricted to the solution of Fokker-Planck equations 

in velocity space with the choice of a tractable 

approximation of the collision operator. This limitation 

was overcome when Hirshman [9,10] derived an averaged 

parallel viscosity coefficient for a collisionless plasma, 

which placed the long mean free path effects calculated 

kinetically into the fluid framework. 

A concept inherent in the calculation of the impurity 

transport fluxes is ambipolarity. This was introduced by 

Hazeltine and Ware [11], who proved that the radial particle 
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transport could not set up gross charge imbalance. This 

requirement dictates that a radial flux of one species must 

be offset by opposing radial fluxes of other species, so 

that the net charge flux is zero. Hirshman [9,10] later 

proved that one species being collisional would hold the 

magnitude of the differential transport of the two species 

to the magnitude of the transport with both species 

collisional, regardless of the collisionality of the other 

species. Samain [12] had earlier found this to be true when 

large concentrations of impurities were present. 

Up to this point, the only effect considered in 

calculating ion-impurity transport was internal, collisional 

momentum exchange among the main plasma ions and impurity 

ions. Ohkawa [13] suggested that a source of external 

momentum, such as a neutral beam, could reverse the inward 

flow of impurities driven by gradients. El Derini and 

Emmert [14] produced a theory based on adding terms to 

account for the direct momentum effects of a beam. Stacey 

and Sigmar [15,16] included the effects of the momentum 

source and an external drag on the flows within the plasma 

and on the radial electric field, as well as the direct 

effects, to develop a consistent theory for transport in the 

presence of external momentum exchange. The drag could be 

from an external source, such as momentum loss by loss of 

charge exchanged ions, or by a viscous momentum loss to 

adjacent flux surfaces. The inclusion of these momentum 
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effects into the transport calculation subsequently led to 

an expression for radial impurity transport driven by a 

momentum source. 

Ohkawa [17] also suggested that radial transport 

could be altered by the introduction of a poloidally 

asymmetric particle source. This theory was then developed 

by Burrell [18] and Wong [19] for collisional, two-species 

and multiple-species plasmas, respectively. Chu and Rawls 

[20] obtained similar results through a kinetic approach in 

the Pfirsch-Schlueter and plateau regimes. With a fluid 

model in the Pfirsch-Schlueter regime, Stacey [21] 

generalized the theory to include both momentum and particle 

sources simultaneously. 

Further extensions to the fluid treatment of impurity 

transport theory including external sources were performed. 

Stacey and Sigmar [15,16] extended the multiple regime 

formalism to include both axisymmetric particle sources and 

momentum sources. They predicted that co-injection of the 

neutral beam power available in PLT would reverse the 

normally inward flow of impurities. Co-injection is defined 

as toroidal neutral beam injection in the direction of the 

magnetic field, and counter-injection is defined as toroidal 

neutral beam injection in the opposite direction. Stacey 

[22] further extended the theory to include heat sources and 

heat fluxes in any collisionality regime. Burrell [23] also 

did this calculation for a collisional plasma, and Parks, 
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Burrell, and Wong [24] included a momentum source for a 

collisional or collisionless plasma with the drag on the 

impurity species set to zero. 

Burrell et al [25,26] included inertial effects on 

impurity transport, which is important when injected beams 

drive a toroidal plasma rotation. The rotation tends to 

induce poloidal variations of the concentrations of heavier 

impurities, and is important when the rotation velocity is 

near to or greater than the impurity thermal velocity. 

Stacey and Sigmar [27] recently included the effect of 

inertia, poloidal density variations, and momentum sources 

to formulate a self-consistent theory for the impurity 

fluxes. 

Experiments to investigate neutral beam driven 

impurity flow reversal theory were performed in PLT [28,29], 

T-ll [30], and ISX-B [31]. All of these experiments 

indicated a greatly enhanced impurity accumulation at the 

plasma center with a counter-injected beam, and a reduced or 

slightly reversed impurity influx with a co-injected beam, 

qualitatively agreeing with the flow reversal theory. Part 

of this thesis is analysis of a well documented set of PLT 

experimental results. 

The original Stacey and Sigmar theory [15,16] for 

impurity transport was based on the first two moment 

equations in the fluid formalism, and hence omitted 

temperature gradient effects. In Chapter 2 of this thesis, 
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the Stacey and Sigmar [15,16] theory is extended to include 

tempsrature gradients and heat sources in the calculation of 

particle transport across flux sufaces, and to calculate 

heat transport across flux surfaces. This calculation 

requires the use of four moment equations solved 

simultaneously, and includes all of the above referenced 

effects, except inertia, for any collisionality regime. The 

resulting theory is then reduced to a computationally 

tractable form. 

In Chapter 3, the extended theory is applied to 

interpret one set of experimental data from PLT [29], It is 

found that the theory agrees roughly with experiment to 

within a factor of two, which provides a basis for adjusting 

the theory to obtain a predictive model by scaling the 

predicted fluxes up by a factor of two. 

The adjusted model is then used in Chapter 4 to 

^predict the effect of neutral beam injection on impurity 

transport in larger experimental and reactor plasmas. In 

particular, beam injection is studied in three machines: the 

Tokamak Fusion Test Reactor (TFTR), currently in the initial 

stages of operation; a conceptual design of a larger 

engineering demonstration device (FED); and an even larger 

conceptual reactor (STARFIRE), thought to be typical of 

commercial tokamaks of the future. The goal in TFTR is to 

predict the magnitude of the effect of neutral beam driven 

flow reversal with the existing neutral beam system and to 
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estimate if flow reversal might be used for impurity 

control. For FED and STARFIRE, the objective is to estimate 

if neutral beam driven flow reversal might be a feasible 

means of impurity control in tokamak fusion reactors. 



13 

CHAPTER II 

DERIVATION OF THE TRANSPORT EQUATIONS 

2.1 Introduction 

In this chapter, the radial transport properties of 

an impurity species and the heat conduction of ions in a 

tokamak are calculated. Since the transport is driven by 

momentum exchange, the momentum of each interacting species 

must first be determined. This is accomplished here by 

solving the moment equations for the particle and heat flows 

for each species. With these flows and a constitutive 

relation from kinetic theory, the momentum exchange rate and 

hence the particle and heat fluxes across flux surfaces can 

be calculated. 

In Section 2.2, the equations obtained by taking the 

velocity moments of the Boltzman equation are solved for the 

flows on a flux surface to within an arbitrary constant of 

integration. These constants are then determined from the 

flux surface average of the parallel momentum and heat flux 

equations, which in effect determine the average flows 

parallel to the magnetic field. Constitutive relations for 

the internal viscous and frictional properties are required 

in order to make an explicit determination. These relations 

are used in Section 2.3 to calculate the average flows 
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parallel to the field. 

The toroidal momentum balance is employed in Section 

2.4 to find the transport between two species. The 

constraint of ambipolarity is shown to be equivalent to 

toroidal momentum conservation. This ambipolarity condition 

provides the means of calculating the radial electric field, 

completing the general solution. 

The general equations for the impurity fluxes are 

difficult to use and understand. If the collision rates are 

large enough for the plasma to be considered to be 

collisional, no long mean free path effects are seen, and 

the equations can be significantly simplified. Conversely, 

collisional effects are not significant in collisionless, or 

long mean free path, regimes. There is also a transition 

regime in which a heavy impurity may be collisional and the 

hydrogenic ions collisionless. In order to show important 

aspects of the transport equations, approximations are made 

to reduce the geometry to a large aspect ratio, low plasma 

pressure plasma limit in Section 2.5. The simplified 

transport equations are then given and discussed for three 

collisionality condition: both species collisional in 

Section 2.6, one collisional and one collisionless in 

Section 2.7, referred to here as the mixed regime, and both 

species collisionless in Section 2.8. 
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2.2 Surface Flow Evaluation 

The starting point in determining the particle and 

heat flows is the set of equations that are obtained by 

taking the velocity moments of the Boltzman equation. The 

derivation of these moment equations from kinetic theory is 

reviewed by Braginskii [3] and by Hinton and Hazeltine [32j. 

The first four moment equations, manipulated into forms 

which lend themselves to physical interpretation, are used 

in this study. Since each moment equation includes a higher 

moment, an assumption about the fifth velocity moment must 

be made to close the system. 

The even moments for a species i, 

£v\: 
Bt -

 + V'YvVz = 5X 2.2.1) 

and 

•fc.H* + TT-V-V, ̂ ViV\^\ * wV.V^+V-v = 

2.2.2) 

K + S; - V£*(fcJ + S ^ + Vz rn.iv/v.) 5.-
A^ A, 

express the conservation of particles and energy 

respectively, while the odd moments, 

rn.iv/v
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y^YJOt*"*^'^*** + v"̂  = 

2.2.3) 

»ve, (E - V^B) + R- +Sl -m.V; Si 

and 

at (4-f^v,) + ! ^ . § ^ - e x -i^y-n 

7 , 2 . 2 . 4 ) 

describe the momentum and energy flux balances. The scalar 

terms involved are, for species i: m^ ,e^ ,n̂  ,TX ,and px ; the 

mass, charge, number density, temperature, and pressure, 

respectively. The vectors E and B are the electric and 

magnetic fields, and the vectors V^ , "q. , and Q. represent 

the net average velocity, heat flux, and heat flow. The 

heat flow is the summation of the heat flux, which is heat 

conduction without net particle movement, and heat 

convection. Tensors describing the anisotropic shear 
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stress, energy flux, total pressure, and momentum stress are 

TT » ^i:» ^x ' an(* Mj£ • These quantities are the same as the 

quantities defined in the review by Hinton and Hazeltine 

[32], and the defining relations for these are given in 

Appendix D. Finally, l£ and Ŝ " are the collisional friction 

and source moment of order n for species i. These 

equations, without the external source terms, have been 

studied extensively (see Reference 31 for a review). The 

study of these equations with external sources has begun 

only recently, as discussed in Chapter 1. Of particular 

relevance to this work is the development by Stacey and 

Sigmar [15,16], which was based on only the first two moment 

equations. One purpose of this thesis is to extend that 

work to four moment equations to develop a multispecies 

neoclassical transport theory including the effects of 

external sources and drag. The results given here are 

applicable in all collisionality regimes. 

From plasma equilibrium considerations, the usual 

generalized axisymmetric co-ordinate system is defined [33], 

see Figure 2.2.1. By assuming' that the distributions are 

Maxwellian plus a small correction, it is found that the 

plasma currents lie on surfaces of magnetic flux, often 

called flux surfaces, and that the plasma pressure is 

constant on these surfaces. The normal to these surfaces is 

the first co-ordinate direction, "}£ . In the cylindrical 

limit, V is equivalent to the radial direction. ^ is 
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the poloidal, subscript p direction, and 9 is the 

toroidal, subscript <f> direction. The latter two 

co-ordinates lie on the flux surface. 

By using the standard toroidal device notation of 

distance from the major axis, distance from the minor axis, 

and poloidal and toroidal magnetic fields (R, r, Bp, and B$, 

respectively), the following inter-relationships occur: 

IVV-I = R B P , 2.2.5a) 

| y £ | = l / fc , 2.2.5b) 

F = RB« = f (V) . 2.2.5c) 

and 

B - B^^ + B^7 . 2.2.5d) 

The gradients are in the form p=dp/d"^7*f =p (̂ )7"»f, p=p("*/0 , 

where the prime denotes the derivative with respect to the 

flux surface normal, Y . With this co-ordinate system, a 

unit vector along the magnetic field is defined 

Y\ •= B/\©\ " N * ^V<J>KV^)/ . 2.2.6) 

Taking the vector product of this unit vector with 

the even moment equations, the perpendicular particle flows 
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w J - * YY\ t^ir * » ^ (v-v)v, *vP̂  

•V-T^-n^E - ft - (Sj-m^S 

2 . 2 . 7 ) 

and heat flows 

_s ^ " I P ^ V , 
- \ A. M^'!^ 

r- Sa 
•4.'-. 3 t + ¥ n. V/ 3T 

+ v<@, - f ^ - r w - %£• (nA- iTr (rv^t) 

T* 7=5 

- oe - f££ -IV - f £ £ ' 

2 . 2 . 8 ) 

are found immediately. 

In order to determine the important terms in these 

and following equations, an ordering system must be 

constructed. The usual scheme, as reviewed by Hinton and 

Hazeltine [32], is followed here. The definitions of scale 

length, L ̂ |dlnp/dr| = | dlnn/dr[ ^ |dlnT/dr|, gyro-frequency 

^.=eB/m, and thermal velocity, "v̂ K =j2T/m, lead to the 

ordering parameter 
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S,= VtK^L = ru/L « 1 • 2.2.9) 

This ratio is equivalent to the ratio of the radius of the 

cyclotron orbit to the distance over which macroscopic 

parameters change. When this ratio is much less than unity, 

which is the case for strong magnetic fields, the change in 

pressure, temperature, et cetera is small over a cyclotron 

orbit and those properties are considered constant over the 

orbit. 

From equilibrium, using the Maxwellian plus a small 

correction of order 6\, it is found that, in addition to 

the pressure, the density, temperature, and electrostatic 

potential are dependent on the order unity, or uncorrected, 

Maxwellian. These quantities are also constant on the flux 

surface. It is also found that the flow velocity and heat 

flux lie on the surface to lowest order and are dependent on 

the order o, correction to the Maxwellian. For convenience, 

terms which are dependent solely on the uncorrected 

Maxwellian will be subsequently said to be of order unity or 

-O 

zeroeth order, 6 F quantities dependent of the first 

correction term to be first order, o , et cetera. The 

following relationships are found to hold from their 

respective definitions: 
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1 s:--V* ( I + 0 (S,o2)) ' 2.2.10a) 

where $ is the electrostatic potential, 

R - V\̂ VV + Pi - ^ A / V ^ J + ^ ; f 2.2.10b) 

[H^-pjr] - O ( S J , 2.2.10c) 

\/. '= 0 ( 8 . ) , 2.2.10d) 

fe-fftVj - 0(5.) 2 . 2 . 1 0 e ) 

and 

^ - [ ^ - f f X ] ( l + OCSO) . 2.2.10f) 

Another parameter useful in ordering the equations is 

a time ordering parameter, defined by the ratio of the 

collision frequency to gyrofrequency, 

6 2 E
V A <<1 ' 2-2-n) 

where V is the collision frequency. When this ratio is 

small, the particles will complete many cyclotron orbits 

between collisions and the orbit itself need not be directly 

considered. This leads to the friction being first order in 

62. Furthermore, the sources are considered to be first 

order in &, , and the off diagonal tensor terms, which are 
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driven by order Sv effects, to be order o or smaller 

[2,32]. 

Since, in essence, XL"* is a multiplier of the 

equations for the perpendicular flows, Equations 2.2.7 and 

2.2.8, only zero order terms need be evaluated to determine 

the flows, n-V- and q. . Utilizing the above ordering, the 

lowest order perpendicular to the magnetic field and on the 

flux surface are found, 

KAVZ = î > n * W P I * n.e^VS 

>S + "i.tJi)-lW =• SB* C,W* 

2.2.12) 

~ e.ft V *• 

and 

v, 
2.2.13) 

= JV1 £ *(?*«& -l^c^P^ 

Both of these flows lie in the flux surface, being functions 

of the radial variable "V* alone. 

With the lowest order flows perpendicular to the 

magnetic field known, the odd moment equations are then 
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intergrated to evaluate the flows parallel to the field. 

Before proceeding, the flux surface average is 

defined, 

f***/B A 
^ A v _. = , 2.2.14a) 

fu*/\ B, 

where d-{p indicates the differential length in the poloidal 

direction on the flux surface. It is useful to note that, 

for any differentiable quantity, A, that, because of 

'ax i symmetry, 

< B - V A ) = 0 . 2.2.14b) 

The other device needed to continue with the odd 

moment equations is the scaling of the time derivatives to 

fit with the ordering scheme. Still following Stacey and 

Sigmar [15], changes taking place in the period of a 

cyclotron orbit "5 /&t ^ SI can only be caused by changes in 

the electrostatic field and pressure, and are considered 

instantaneous for the purposes of transport. Changes that 

occur slowly such as magnetic field diffusion and plasma 
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collision rates that change with first order density, 

temperature, et cetera, are too slow to be considered and 

are treated as constants. The two time scales of interest 

are the time response of the electrostatic potential and 

flows due to a source input h /$> t, , and the slower buildup 

of particles and heat from the sources,^ /at , where the 

subscripts refer to the order of the changes made in that 

time scale. 

The lowest order results from this time scale 

ordering are 

Vt = O 2-2.15) 

for the first (V°) moment and 

T T I : - 0
 2-2-16) 

•3 

for the third (V ) moment. By taking the flux surface 

average of these moments it is found that 

2£± - /<°\ . n ( ^ 2.2.17) §^ = <SD + O(V) 

and 
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- f ^ = <^> +OCS*) • 2.2.18) 

Note that the friction, Rz , the energy transferred between 

species, is small since the ion-ion equilibration time is 

short. 

By substituting the time derivatives in Equations 

2.2.17 and 2.2.18 into the lowest order terms of the first 

and third moments, and by separating the flow divergence 

into perpendicular and parallel components, the following 

equations are obtained: 

v .«X l v + ?•*&,.= S£ - <*°> 2-2-1 9 ) 

and 

V-q +V-q . =• S* - < V > • 2.2.20) 

The divergences of the flux surface flows are therefore 

changed only by poloidally asymmetric sources. These last 

two equations are solvable, using the equations for the 

perpendicular flows, Equations 2.2.12 and 2.2.13, to obtain 

the flows parallel to the field, 
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*&* = 
"-f (v-<F>)+ e(i;-^ lO/^">) 

and 

a MX 

* <B^Vlu> B/<^> J & 

- f (i-^)**fc-<^>/<**>) 

- l \ s (I;-<^T:>A^>) + ̂ ^^u> /<e?> A. 

A 

2 . 2 . 2 1 ) 

2 . 2 . 2 2 ) 

The terms <Bn̂ Y:/i > a n^ <BqXj/> are constants of integration 

^2-

which will be determined subsequently. The terms 1̂. arise 

from the asymmetric sources and are defined as 

C B / ( V - ^ > ) /e„U 2.2.23) 

which vanish if the particle or heat source is uniform over 

the flux surface. It can be seen from Equation 2.2.22 that 

the heat flow is affected both by direct energy input to the 

species (I ), such as radio frequency heating, and by heat 

input due to introduction of energetic particles (I ). 

This formulation leaves only the flux surface 
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averaged parallel flows, the constants <Bn^\£/(> and <BqyCll> 

undetermined in calculating the first order flows. 

The parallel and perpendicular flows are combined to 

obtain 

rvV, - ^ ^ • B " T- (?/ +^e^$J "£7$ 2.2.24) 

and 

s* 
**%l] i - i 7i?-T-' K7* 
^ 

2.2.25) 

The last term in each equation represents the rigid body 

rotation in the toroidal direction. The poloidal flows 

which enter Equations 2.2.24 and 2.2.25 are expressed as 

2.2.26) 

+ fa -<6*Ix0>Aft,>) 

and 
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2.2.27) 

+ (i t
l- <tfi^y<s^ - ! T ^ ° -<&&/<&-?) 

where F=RB =f('lf). Both of these flows lie strictly on the 

flux surface. 

r B , ^ _ J_ 
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Figure 2.2.1 Generalized Axisymmetric Co-ordinate System 
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2.3 Parallel Flow Evaluation 

In order to close the system of equations and 

explicitly determine the constants, it is necessary to 

introduce constitutive relations between the parallel 

viscous forces and the flows. Following Hirshman, it is 

assumed that if the lowest order particle and heat fluxes 

lie on the flux surface, then the viscous forces must also 

lie there and be linearly dependent on the flows. These 

flows were broken in the last section into a parallel 

component plus a rigid body rotation, the latter showing no 

viscous effect. Using this form, the viscous shear may be 

written [10] 

2.3.1) 

-t- 3^<c£.7B)*>?xp 

and 

<B-v-(&-f£.f?)> = 

2.3.2) 

3 <(A.V6)Z>£ (fJlLn?+ M^pp) 



31 

where the U^ are the parallel viscosity coefficients. The 

first term on the right hand side of Equation 2.3.1 was 

derived by Braginskii [3] for the collisional limit using 

the explicit collisional form of the pressure shear, T& . 

The flux surface average of the parallel components of the 

even moment equations leads to 

<B-V-tt> = <B-^> * <8-C'> 2.3.3) 

and 

<B-V-(^-f£. g)> - £ • <B-^'>+<8-^s> 

-%Hit <$•%'> • 2.3.4) 

This formulation extends Hirshman's multi-regime approach 

[10] to include asymmetric sources in the parallel viscosity 

terms as well as the heat input. Burrell [24] included the 

asymmetric sources and heat input, but his results were 

confined to the collisional regime, which, in effect, sets 

the right hand side of Equations 2.3.1 and 2.3.2 for the 

shear to zero. 

The general constitutive relations for the friction 

forces in terms of the flows are given by Hirshman [34] as 
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- c.Vw^lV; -v*) - vs i* m,B<Vi; (•£ - $f) 

2 .3 .5 ) 

U4 -7^.2;) = ct^Y^-cv.-yn 

i V ' 
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* it l P /& 2.3.8) 

The terms C* are the constants 

< .52.cc 
^ = l ~ 59 + oc -»- v.̂ ô-2- ' 2.3.9a) 

r* _ v c - ^ + ^ * 2 3 9b) 

and 

^ ( . 4 \ +• i.fet <*) 
C 3 = 1.41 +3 . lSoC~ Sc> + * + i .34cr^ , 2 . 3 . 9 c ) 

where 

T = V * V K - ; ^ = € ' V V ^ 2.3.9d) 
is a collisionality parameter and 

OC ~ n^Y^-X. 2.3.9e) 

is the effective charge for scattering. These last 

constants are classical corrections to the collision 

frequency which account for the faster particles seeing a 

smaller effective cross section, as was described by 

Braginskii [3] in terms of electrical conductivity. 

Hirshman [34] used the large mass ratio approximation, so 

that the lighter species do not affect the heavier species. 

52.cc
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For the present purpose, all species are kept. 

The source moments are also defined in terms of the 

velocity. The first four moments are: 

Sf = S- r 2.3.10a) 

Si = \<i - m c n ; ^ . . 2.3.10b) 

S^= K ; - { m ^ 4 - V i l > 2.3.10c) 

and 

5^ =. l<; - V^Cfc ' 2.3.10d) 

where the K̂  are directed inputs of the momentum (heat) 

and Ŝ  and K^ are the sources of particles and heat, 

respectively. Note that larger velocity moments of each 

source in Equation 2.3.10 are included separately in the 

moment equations and not in the higher source term. The 

second portion of each term in Equation 2.3.10 is a net drag 

on the plasma from external sources, as used by Stacey and 

Sigmar [15,16]. The latter two drag terms are drag on the 

heat flow due to particle collisions, and drag on heat 

conductance. These two external drags can at least in part 

be a radial transfer of momentum or heat flux to an 

adjacent, "external", flux surface. The drags are more 

appropriately diffusive mechanisms, but they are modelled 

here as equivalent drags. A more detailed explanation of 
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this analogy is given in Section 2.9. 

With these relations, the parallel momentum and heat 

flux balance equations are solvable for the constants <Bqc. > 

and <BniVil.> in terms of gradients, sources, and the 

electrostatic potential. A complete algebraic solution for 

two species is found in Appendix A, producing solutions of 

the form 

<§3iii>- - I f-^- + C(<R|/. > -<B\k » " ^ ^ -#«'<B*„>1 2 .3 .11) 

and 

<BV.„>= t t l ^ K L + A H J /TOiv»;Vitd« • 2-3-12> 

This solution procedure involves equating the two 

forms for the viscous shear equations, equating Equations 

2.3.1 to 2.3.3 and equating Equation 2.3.2 to 2.3.4. By 

substituting a two species limit for the friction, ect., the 

parallel flows can be found directly by algebraic 

manipulation. 

In the above terms, ?\ is a combination of friction 

coefficients. Both i- > and a- , are combinations of the 
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primary flow coefficients, including both internal parallel 

viscosity ana external drag. The Q. , and N • . are the sum of 

the driving terms for that species. These terms are given 

in Appendix A. 

In Appendix B, the electrostatic potential is found 

for a two species plasma (i and z), 

r A I ' \ t i k fMJ, +Y- W / U l <*'-
-Lv"" ^ ^ / ^ ^ - ^v^c ia^^dwr 1 -p?• F § ' ] J ^ " 

" " ^ ^ z t ^ O F* TY~<a«>Afr*ls»n<e»: ft«£1V* J 2.3.13) 

1 __ 
fr+fiz 

r <£>+.&£>! Y^K/Jy ^CNfeJy 
J2- wi P*v^J ^c^Vc*Ca^fl«)Fd^ 

where the [N̂- L terms are the Nj terms of Appendix A which 

include only the electrostatic potential terms, and the 

[N<: "L+ terms are those terms that do not include the 

electrostatic potential terms. The solution procedure 

followed in Appendix B for the electrostatic potential is 

again algebraic, and is directly a result of conservation of 

toroidal momentum and the radial Ampere's Law. 

2.4 Transport Fluxes 

The work of Stacey and Sigmar [16] is followed in 

deriving the particle flux across the flux surfaces. The 

flux surface average of the toroidal component of the 

momentum balance is taken, 
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<l^V$-"Vru!^> = <R vet-^e^V^K^V 

2.4.1) 

to lowest order. By using the component form for the 
-* ~* magnetic field given in Equation 2.2.5d), the VxB term 

becomes the flux normal to the magnetic surface, 

Y\ =. <V*-K^> = V\L <fc*V$ -V^B> . 2.4.2) 

Hence, after equilibrium conditions are established, 

Q /at-*0 ), the flux is 

P.= (VM-.^.V.) = - ^ <fcVt>-0^"«"S^> . 2.4.3) 

As discussed in Appendix B, for steady state, the toroidal 

component of the sum of all the sources must vanish, 

2l.<Rz'^<*-S2>=0. This provides a unique determination of the 

radial electric field. From conservation of momentum, the 

same must be true of any component of the friction, and so 
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the asymptotic transport across flux surfaces must be 

ambipolar, or 

i 
LU 

:& " O 
2.4.4) 

The fluxes can now be evaluated explicitly. For 

convenience, the fluxes are treated in two categories, type 

A for the fluxes arising from collisional friction, and type 

B for the fluxes driven by external sources. It is noted 

that the asymmetric particle and heat sources affect these 

fluxes only indirectly by modifying the surface flows. 

The type A impurity flux driven by the frictional 

drag, Equation 2.3.5, is, for two species i and z, 

e j ;
A = - <x\*. R;> = - ^ j f [c,<^e;-<^»> [& - v ^ ) 

+ C,F j^) -<s^>]; CL<*^^»>(i>*'-li\) , 2.4.5) 

- C,F% p* ?i 
|<By,.> _ I^SSJ^ 

?- Ft 

where the constants <Bq<: |( > and <Bn^V^/r> are given by 

Equations 2.3.11 and 2.3.12, respectively. In order to 

fully express the impurity fluxes, it is instructive to 

present them in physically distinct components. The first 
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portion is the Pfirsch-Schlueter flux, which is an 

enhancement of the classical flux due to toroidal geometry 

effects, and signified by <R (B^-<B2>)> terms. The 

Pfirsch-Schlueter flux is then 

[A; ' "^ [ ^ ~ ̂ ) ~^~ ̂ )J<^-<^» • 2.4.6) 

The averaged flows do not contribute to Pfirsch-Schlueter 

effects, and hence do not enter at this point. 

By substituting into the type A flux the constants 

<Bq^j(> and <BnxVXj|>, the flux equation becomes 

p A r p A-j ^ r y V ^ J r (<£& . &>\ . if? (<Ji2l . <*& 

^ "" M P S ez<S*>F[C'K »J ' S M * <\ 

- " ^ r [ f c l , - e j ^ / a ^ - (c^-e,)^/^. , 2.4.7) 

_ r (&± - ^ J L 

where 

e, = ct*fc- ̂ V V ^ ^ A J ,*A 
2 . 4 . 8 ) 

• v / 

^Z n ^ i V ; , ( l / . J o . , " 
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The expression "2 is obtained by exchanging subscripts. 

Other physically significant distinct components, 

including the electrostatic potential gradient, or electric 

field, asymmetric sources, directed inputs, and gradients, 

separate out of this formulation by using the long form of 

the terms N^, Q̂  , found in Appendix A. It is seen that the 

asymmetric sources directly drive the flux, while these and 

other effects combine to drive it indirectly through 

modification of the averaged parallel flows. The sign and 

magnitude of all of these effects is dependent on the 

collisionality regime, and will be discussed in more detail 

in the next section. 

Similarly, the type B flux, which is driven by 

external sources, is found by using the form for the source 

found in Equation 2.3.9. The type B flux for impurity 

transport is 

U = T. = ^ + e,^> P* 

2.4.9) 

[<R^-<tf>)>(^ + *') + ^ ^ < s v 2 l v > ] 

The form of this equation is the same form found by Stacey 

and Sigmar [16], Direct effects are the momentum input, an 

external drag operating on the Pfirsch-Schlueter affected 
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pressure gradients and electrostatic potential, and an 

asymmetric input of impurities. The indirect effect is the 

external drag on the modified impurity flow parallel to the 

field. Non-impurity effects show up only through this and 

the electrostatic potential. Substituting the evaluated 

form of <BnzV2^>, the type B flux is obtained. 

By inspection, the type A flux is seen to be directly 

ambipolar, as is necessary to conserve momentum in 

collisional friction. The type B flux is also seen to be 

ambipolar, as required by the equilibrium momentum balance 

equation and radial Ampere's law. 

Combining the types A and B fluxes leads to the form 

™,-^« \r( P/_ _Pil\_r fe -li^-flpT--

-^{^-^ftf-^Y^l ' 2-4-io> 
-<T>(-cft---S)+[(c^-©,-/S.A)N, 

- ta-e* + MHW/v 
which, with inclusion of the solution for the electrostatic 

potential found in Appendix B, is the total impurity flux in 

terms of gradients and sources only. 

Comparing Equation 2.4.10 with the results of Stacey 

and Sigmar [16], this form differs in the first set of 
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brackets by the addition of the multiplier C, for the 

pressure gradients, and now includes the temperature 

gradients. For the asymmetric sources, the second set of 

brackets, the factor (\ is again added and the difference of 

the heat sources is now included. The difference in the 

parallel averaged heat fluxes is added here. The solutions 

of the parallel averaged particle flows and electrostatic 

potential here are given in the same form as was used by 

Stacey and Sigmar, with the same general dependencies on the 

momentum input, particle source, and pressure gradient, but 

the Cn factors and higher moment terms are added here. The 

particulars of the effects are discussed below in the 

reduction to each collisionality regime. 

The results of Burrell [24] are similar to the 

results above, but are restricted to the collisional regime. 

Additions to his results are then -of course all 

non-collisional terms, i.e., those including jd^ , jj^ . 

Also, Burrell's result, given inclusive of his solution for 

the electrostatic potential and parallel averaged flows, 

does not include asymmetric heat sources to the impurities 

or the impurity temperature gradient, both of which are 

present here. 

The pattern set in deriving the cross field particle 

fluxes is used here to find the heat fluxes. The flux 

surface average of the toroidal component of the heat flux 

equation, Equation 2.2.4, is taken, which leads to the 
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steady state heat flux, 

2.4.11) 

As in the particle transport case, the heat transport is 

driven by friction and sources. Unlike the particle 

transport case, there is no conservation law for heat flux, 

and hence no ambipolarity-like constraint. This will be 

seen to allow long mean free path scaled heat conduction 

even when one of the interacting species is collisional. 

All of the terms involved in the equation for the 

cross field heat flux are known, including the electrostatic 

potential. By substitution, the ion heat conduction flux is 

found to be 

+ (C5+!f+S^) eA*? f£ - "SI < **W-fe>> 

- ^ [ ( t j i r W ^ - CC^+BONJ/J« 

2 .4 .12a) 

where 
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A'~ a^L^z^ "̂ Ŵ L-i /̂ ' \fz + ̂ \ C+^+5££ 2.4.12b) 

and 

B^U^^^](^'+iM- 2.4.12c) 

The heat flux will be discussed in some detail when 

this equation is reduced to specific collisionality regimes. 

Stacey [22] outlined the theory for heat transport including 

heat sources and an arbitrary collisionality plasma. 

Burrell [23] included the sources for a collisional plasma, 

and Parks, Burrell, and Wong [24] studied the heat transport 

effect of a momentum source for arbitrary plasma 

collisionality with no external impurity drag. 

The results presented here extend the earlier results 

by the inclusion of all of the above mentioned effects, 

specifically external heat sources and drags, for any 

collisionality regime. 

2.5 Approximations 

The properties of the transport fluxes vary greatly 
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with the rate of inter-particle collisions. When the plasma 

has a relatively high density and low temperature, 

collisions are frequent, and the ions travel only a short 

distance between collisions. Banana orbits are not 

completed, and the effects associated with them are not 

observed. This is referred to as the collisional, or 

Pfirsch-Schlueter, regime. At lower densities and higher 

temperatures, collisions are infrequent and transport is 

greatly enhanced by the banana orbit sized diffusion steps. 

The region in which this occurs is classified here as the 

collisionless, or banana plateau regime. The main ions 

reach the collisionless regime while the heavier impurities 

are in the collisional regime. This mixed regime is an 

important regime for impurity transport, the transport 

exhibiting some properties of the other two regimes. 

The relative frequency of inter-particle collisions 

is measured in terms of a collisionality parameter, 

^ H C v ^ / u ^ U " * ' 2-5 - 1 ) 

where 

0)« •= V,.QPa / r B o 2.5.2) 

is the thermal particle transit frequency between banana 
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orbit turning points, distance qR, in a barely trapped 

orbit. The term Xv is the self collision frequency of 

species i, and £ is the geometric factor of inverse aspect 

ratio at radius r, £ =r/R. Hence, the collisionality 

parameter is basically the ratio of the time it takes to 

complete a banana orbit to the mean time between collisions. 

When the collisionality parameter is large, collisions 

dominate and the particles do not complete banana orbits; 

when the collisionality parameter is less than unity, 

magnetic trapping effects are important. 

The direct effect of magnetic trapping on the 

previously described transport equations is taken into 

account through the parallel viscosity coefficients, /s»j , 

and the collisional friction. In general, through any 

collisionality regime, they follow the fitted form 

where a and b are numerically evaluated functions which are 

order unity. The actual coefficients and fitted forms are 

given by Hirshman [35,36] and reproduced, including a fit 

for fj> i not given by Hirshman, in Appendix D. For a large 

collisionality parameter, i.e. highly collisional, each 

parallel viscosity coefficient becomes small, but the ratio 

of any two remains finite. 
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In order to study the transport fluxes defined in the 

previous section, it is useful tc express these fluxes in a 

simpler geometry. This allows direct comparison of the sign 

and magnitude of each effect, which in turn directs more 

attention toward the more important effects as well as 

addressing the possible mechanisms for controlling impurity 

transport. A large aspect ratio, low beta approximation is 

used as is generally found in the literature [32], and 

follows the formalism used by Stacey and Sigmar [15,16]. 

When beta f3 , the ratio of the plasma pressure to the 

magnetic field pressure, is a small number, the particle 

pressure does little to change the magnetic field 

configuration. The vacuum magnetic field is then used to 

good approximation. A further approximation, based on a 

large aspect ratio, A=l/£ =R/a>>l, coupled with the vacuum 

magnetic field approximation, allows the flux surface 

averages to be expressed in a simple, closed form. 

The vacuum magnetic field varies inversely with the 

major radius, and, by using B as the poloidal angle for a 

circular cross section, is written 

6 = B0 / L \ + ?- <^s e ) » 2.5.4 ) 

since the major radius is 
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R = R 0 (l + t. co^G ) . 2.5.5 ) 

The subscript o refers to the value on the toroidal axis, 

and the Q angle is measured from the outer plasma 

midplane so that the maximum major radius occurs at G = 0. 

The toroidal field dominates, so that the total field is 

used where it arises (B,=IL ). In this limit, the flux 

surface average becomes 

< A ) = ;£ffjA(\**.cos©W© • 2.5.6) 
o 

By making use of the smallness of the inverse aspect ratio, 

the following flux surface averages and relations are found: 

<6"> = B! t l * % I') , 2.5.7a) 

< R \ ^ - < t f » > = -Zt*K*B? , 2.5.7b) 

< R N < J > - & > ' R%VC«>. C\ + '/it*) , 2.5.7c) 
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<B*U> = &.K«i ' 2 ' 5 ' 7 d ) 

P, = * . S „ < n » V t r > - 2.5.7e) 

F s R B ^ = K 0 % „ , 2.5.7f) 

and, for any q u a n t i t y A, 

A ' ^ * * > 
A = RBP "5? • 2.5.7g) 

The asymmetric particle sources on a flux surface are 

assumed to be depenent only on the poloidal angle. Defining 

a term consistent with this poloidal dependency, 

-z-'ft e 

^E^/c!e.o,e/(sr-<sr»c^icose)do' . 2.5.8) 
vu 

leads to a low beta approximation form for the asymmetric 

sources, 
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£ " tC„ Oo - Z. *£ 08 ( < 0 = • -T— %< 2.5.9) 
C^po 

and 

<&)) = £l ^ & "7z^; C ) • 2.5.10) 

2.6 Reduction to the Collisional Regime 

The first plasma collisionality regime studied here 

is the collisional regime, where the particle transport 

effects are dominated by the high rate of inter-particle 

collisions. This regime is the first reached 

experimentally, and is the lowest regime for which this 

multiple ion species approach is applicable. 

In this limit, the collisionality parameters, %rt- and 

V-KZ are very high, causing the parallel viscosity 

coefficients to be set to zero. The ratio of two viscosity 

coefficients, H^^/V^L' *s f o u n d t 0 be finite. Since there 

is always a viscosity coefficient multiplying this ratio, no 

viscosity coefficients appear. The effect of this limit is 

then to set the right hand side of both Equations 2.3.1 and 
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2.3.2 for the viscous shears to zero. This is the limit to 

which Burrell's results [23] are confined, although he has 

separated the effects of inter-species equilibration. As 

before, Stacey and Sigmar [16] also reduced their solution 

to this limit, but did not include the higher moment, 

temperature gradient effects. 

By first applying the highly collisional limit but 

not the low beta limit to the particle transport, the 

origins of the effects are seen. The low beta limit is then 

imposed to approximate the flux surface integrals and to 

show the magnitude and direction of the flux components. 

The limit of the terms used is given in Table 2.6.1. 

By imposing the collisional limit on the coefficients 

of the combinations of terms N̂  and N? in the equation for 

the total radial impurity flux, Equation 2.4.10, it can be 

shown that the coefficients multiplying Nx cancel 

completely, C,^ -^-/^z^ =0, and that the coefficients 

multiplying N? reduce to its denominator, dz^, 

Ĉ  i^ -O^+fS^i^ + h )=dlj. Due to the subsequent cancellation of 

the Q terms, only the averaged parallel momentum source, 

<BKc//>, is left in the last set of brackets in Equation 

2.4.10. 

With the inclusion of the collisional limit of the 

two species electrostatic potential found in Appendix B, the 

radial impurity flux becomes 
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+ T, ̂  |<?V(^)> - 4 ^ ^ ^ 0 ^ ^ ^ - e ^ O . 2.6.1) 

tv̂v.-» 4(r * ^ V ^ - < ^ V c %f<^- ̂ ] 

It is seen that this flux is independent of directed heat 

flux input and is driven by differences in gradients, 

momentum inputs, and asymmetric sources, each set being 

obviously ambipolar. 

The low beta, large aspect ratio limit of the 

particle flux can now be expressed as the sum of these 

components, each of which is associated with a specific 

driving force: 

/ „ \ / v 1 l€r*s»«.^ \lc , A / 3 * V I 5pv _ 1 , 5 p ^ 
v V z / > - | - e , g f AL> fc+p>zj\^£>~^ ^ e ^ r , 

Q v - ^ A , 

2 . 6 . 2 ) 

^Z { &i Sr ~ e 2 9 r 

is the particle flux driven by pressure and temperature 

gradients; 

VA | --%-4C^#J( i-$Mi 4)| 
5flii r<_e. 
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is the particle flux driven by poloidally asymmetric 

particle and heat sources; and 

, MN I - -c* AJ^±_ lAJ l i i 2.6.4) 
<«&X\- € e , B f ( £ • + />,) 

movfltw^ov^ 

is the particle flux due to the neutral beam momentum input. 

These results extend the results of Stacey and Sigmar 

[16] by inclusion of temperature gradient effects, the last 

term in Equation 2.6.2, and by inclusion of poloidally 

asymmetric heat sources, the last term in Equation 2.6.3. 

Since more general forms of the parallel viscosity and 

friction are used, Equations 2.3.1 and 2.3.3, the previous 

results of Stacey and Sigmar- [16] are assured. These 

results reduce to the results of Stacey and Sigmar when the 

temperature gradient and poloidally asymmetric heat sources 

are omitted, and in the limit C,—>1 and C^—>0. If the 

external drag terms are omitted, the flux due to the 

pressure and temperature gradients is identical to the 

results obtained by Rutherford [5]. 

The results of Burrell [23] are equivalent to the 

results given in this limit, except for the impurity 

temperature gradient and heat source, which he did not 

include, and a different approximate form that he used for 

the directed inputs. 
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In order to compare the effects of gradients, 

sources, and momentum inputs, it is necessary to use typical 

numerical values of the transport coefficients and to use 

models for the sources. Fits to the values of the transport 

coefficients Cn are found in Equation 2.3.9. For an 

effective impurity density of one,OC=n2;Z /n.~*lt the 

constant C, is .67 and C 2 is .56. These differ by less than 

^ 20 %, giving the density gradient the most important role 

in the gradient driven flux when the density and temperature 

scale lengths are approximately equal, 

<*&l 
ẐtVvuVoJ, -/_L3H£__I_ SliLjiU'-i^i 2.6.5) 

Q<-c» ei 

Since the main ion and impurity temperatures equilibrate 

rapidly, the temperature gradient difference becomes 

(z-l)/Ze dT/dr. In the usual case of negative temperature 

and main ion gradients, the impurities will be driven inward 

by both gradients. 

Similarly, the impurity flux due to asymmetric 

particle and heat sources for a typical plasma becomes 

<*X) Wr 
_£l Xn^-^-rift-^ 2.6.6) 

Joui-a 
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Approximating the density gradient by Id In n/dr| 1/a, 

where a is the plasma minor radius, leads to the requirement 

that the source is approximately 

S>3.4 f ? 2-6-7) 

in order for its effect to be comparable to the main ion 

gradient. The source needed to significantly affect the 

impurity transport is large, but may be an important effect 

at the plasma edge and is needed in properly calculating the 

effect of reflux from the walls on edge impurity transport. 

The neutral beam current needed in order for the 

momentum driven flux ^ to be comparable to the ion density 

gradient driven flux, V , , is 

I, = ^ ' W ^ l<H\r r 2.6.8) 

found by using the momentum input form given in Appendix D. 

The term \f~ is the volume fraction injected into, and the 

term 
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H = C,(v fV^I * ^ 2-6-9) 

is defined. 

Stacey and Sigmar [16], using an average pressure 

gradient, found that the currents available would have a 

first order effect on various present-day experimental 

devices. Impurity flow modification was subsequently 

observed experimentally [28-31]. They required that H be 

approximately unity. In the present case, their 

approximations would not be greatly modified, so these 

approximations are not repeated. Their results showed that 

in a first generation reactor with R = 5 m., a = 1.5 m., 

1 = 5 MAmp, To = 15 keV. , "T = 5 keV. , "n. = 102°/mJ, and 

E, = 160 keV., flow reversal could be achieved with less 

than 10 MWatts of power injected into one fifth of the 

plasma volume. 

First principle mechanisms capable of explaining the 

experimentally observed drag, and therefore the drag factors 

yQ,- and j3? t are not known [37]. These drag factors are 

discussed in more detail in Section 2.9. If the ratio 

fil/ftc is small, H is large and neutral beam driven 

transport effects comparable to gradient driven effects 

would not be seen. Burrell [23] assumed the drag ratio 
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Bz /(3; to be small, concentrating on the second term in 

Equation 2.6.4. His results showed counter-injection 

driving impurities outward. Experimental results, showing 

co-injection driving impurities outward and 

counter-injection driving impurities inward [28-31], 

indicate that the ratio fix/pi must be > K^/K^t. . 

From the large aspect ratio, low beta, collisional 

limit of the ion heat flux, 

iv ztWvv^fp (_L «£i_ ± W \ _ si 1 *2it r *£*< + * «\] 

£ vm.-Y-c'J,"?. 

«,*,' 
( c ^ ^ ^ , ^ " ^ , 2.6.11a) 

-(C^V/^HF 
where 

jci 
^ • f e , K$; 

fc*-= % K»\" % ^ . 2.6.11b) 

Z 
The heat flux is found to be of order £ , as expected. The 

results given above extend Burrell's results [23] to include 

the impurity temperature gradients, asymmetric impurity heat 

sources, and directed heat fluxes. As Burrell found, a 

co-injected beam increases the outward heat flux, and 

driving a toroidal heat flux in the co-direction opposes the 

outward directed heat flux. The work of Stacey [22] was not 
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carried to an actual solution for the fluxes, and Rutherford 

[5] did not calculate the effect of impurities on the 

gradient driven main ion heat fluxes. 

When the effects on the heat flux of density 

gradients are compared to neutral beam injection, the beam 

current needed to produce a beam driven heat flux equal in 

magnitude to the flux driven by gradients is estimated to be 

-r 2. JT ™u*uVc? ' '*• , r . -< rrnJ, o c I M 
Xv ~ ~ U \C. 7 CoO , 2 . 6 . 1 2 ) 

where 

f\(X) = (j + ** ( C 3 - Y 3 C J J . 2.6.13) 

Stacey and Sigmar [16] compared the gradient driven and beam 

driven impurity fluxes in PLT using the following data: a 

40 keV deutron beam into a hydrogen plasma with major radius 

R = 1.3m, plasma radius a = 0.4m, average density 

nt. = 2x10 /m , plasma current I = 600 kA, and average 

temperature TV = 1 keV. This data is used to compare the 

gradient and beam driven heat fluxes. The beam current 

needed to provide a level of flux equal to the gradient 

driven flux is found to be 
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T * 50 \T f<LcO \<'' [ a mP ]' 2.6.14) 

where V?b is a beam coupling factor, #- = n^Z/^and \T is the 

volume fraction injected into. In a clean plasma, OC /̂  0, 

f(oO ** 1, the beam current needed to drive a heat flux 

comparable to the gradient driven flux is 500 to 1000 kWatt, 

which is available in PLT. When the plasma contains more 

impurities, a much larger beam power is required. For 

example, f(oc = l) =2.7, nearly tripling the gradient driven 

flux while not changing the beam driven heat flux. 



Table 2 .6 .1 CoUisional Limit of T e r m s 

eu = % & + jfc/z -C3 

*t=*4& + f'ST 

1- = Ac ; *, = A 

* = c.-clti+i) 

c^-e^-x^ = # 

c,i-e>*+A(i-+A) = <k 
A*,-A* = Cii-ff««0 

N^<BK;M> ^ Q ( f - g ) 




