Georgia Institute of Technology School of Electrical and Computer Engineering

ECE-8853 Cyber-Physical Security in Electric Fall 2020 Energy Systems

Course Information

This course covers the cyber-physical infrastructure of electric energy systems and the technology and security practices to protect the operation of electric energy systems. It is intended to provide students with the ability to study the complex cyber-physical infrastructure for protection and control of electric energy systems, become familiar with communication protocols and standardization, identify cyber vulnerabilities of electric energy systems and learn how to protect against cyber-attacks and understand present practices for cyber security.

Time and Place:	xpected: MWF 12:20-13:10, VanLeer C341		
Instructor:	A. P. Sakis Meliopoulos	A. P. Sakis Meliopoulos	
Office:	E-164, Phone: 404 894-2926 e-mail: <u>sakis.m@gatech.edu</u> e-mail: <u>sakis@comcast.net</u> Canvas and Course web site		
Office hours:	MW 1:30 - 3:00 pm		
	nd Journal Articles Teliopoulos, <i>Power System Ret</i>	laying: An Introduction (980 pages)	
Grading policy:	Homework MidTerm Exam Projects Final	15 % 15 % 3 each 15 % 25 %	

Projects: Details will be given at the following schedule: Sept 4, Oct 2, Nov 6.

General Info.:	The midterm exam is closed book and closed notes. The final exam is take-home. Two formula sheets (8.5" x 11" paper, both sides) are allowed for the midterm exam. The formula sheet(s) should be handwritten originals. The final exam will be comprehensive, covering all topics presented. Questions concerning grading of any assignment or exam must be presented to the instructor within one week after the grade is received.
Attendance:	No consideration will be provided after one week. Class attendance is strongly recommended . It is understandable that occasionally a student may miss a class due to illness or a personal emergency. Students should consult the Georgia Tech policy on attendance at <u>http://www.catalog.gatech.edu/rules/4/</u> . It is the student's responsibility at all times to keep abreast of course announcements, consult the course web site, obtain handouts, etc. All homework, solutions, handouts, etc., will be posted on CANVAS and the course web site.
Course Objective	All absences from exams should be handled through the Office of the Vice President for Student Life and Dean of Students. Students must read the section "Attendance" of the above referenced link.
Course Objective:	This course covers the cyber-physical infrastructure of electric energy systems and the technology and security practices to protect the operation of electric energy systems. It is intended to provide students with the ability to study the complex cyber-physical infrastructure for protection and control of electric energy systems, become familiar with communication protocols and standardization, identify cyber vulnerabilities of electric energy systems and learn how to protect against cyber-attacks and understand present practices for cyber security.
Prerequisites:	Students should be familiar with time-domain and frequency domain circuit analysis, digital arithmetic, programming (any language), and with basics of embedded systems.
Homework:	Homework will be collected on the due date provided on the first page of the homework. It is strongly recommended that you solve the homework individually; discussion in groups is also allowed provided that each student creates his/her own report. Copying or identical reports are not permitted. Late homework will be penalized. No homework will be accepted after solution is posted.
Academic Honesty:	Georgia Tech aims to cultivate ethical behavior and avoid any form of academic misconduct, as defined in the Georgia Tech Academic Honor Code, which can be found in
Accommodations:	http://www.catalog.gatech.edu/policies/honor-code/ or http://www.catalog.gatech.edu/rules/18/. The policies will be enforced. Students with learning needs that require special accommodations should contact the Office of Disability Services at (404)-894-2563 or http://disabilityservices.gatech.edu/, to discuss your special needs and to obtain an accommodation letter. Inform the instructor promptly and all help possible will be provided.

ECE8853	Cyber-Physical Security in Electric Energy Systems		Fall 2020
		Cysteme	
Introduction to El	ectric Energy Systems		
Overview			
	n and Control Functions	P 111	
	on, Transmission, Distributio	on, End Users	
	bgy and SCADA Evolution		
	nication layers and standards ion and cyber security standa	ards	
7 tutomat	ion and cyber security stand	1145	
	ulnerabilities of Energy Syste		
	reats to Electric Energy Syste	ems	
	ation of attacks		
•	inerability of protection syst	ems, operations, generation, others	
	attacks and effects	(project 1)	
	peaker: TBD	(project I)	
	L		
Substation Autom			
	n and Control Functions	austoma	
	on substation process control ation and Operation	systems	
	cation methods / standards		
	ion and Protocol Standards		
	0 family of standards / cyber	security	
	ysics and Cyber co-modeling	g and simulation	
	etection methods		
	nfrastructure protection (NE		
Virtual T		(project 2)	
Substatio	on Cyber Security standards a	and practices	
Communications			
	n layer OSI model		
	ommunications – Encryption		
	Unit to data concentrators		
	D communications		
		ntrol Center communications	
	trol center communications	25	
	o Enterprise communications		
	s and Standards	,	
	nd authentication		
	Practices		
	Detection Systems	(project 3)	
	peaker: TBD		
Microgrids and C	ustomer Energy Systems		
A drange of Coll	Develop Consider Martin 1		
	Physical Security Methods to data attack detection and ic	lantification	

Malicious data attack detection and identification Malicious configuration files/settings attack detection Malicious control detection Industry standards and trends