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Motivation and Problem Setup Experiments
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Conformal prediction (CP) has become a popular distribution-free technique to perform We demonstrate the advantage of MultiDimSPCI against a wide range of CP methods

and existing probabilistic forecasting approaches based on deep neural networks (NN).
We consistently observed that MultiDimSPCI can maintain valid empirical coverage
at 1 — « and generate prediction regions that have significantly smaller volumes than
baselines, especially in high dimensions.

uncertainty quantification for complex machine learning algorithms. Recent works have
especially developed sequential CP methods for time-series (e.g., SPCI [4]). However,
most use cases focused on univariate time-series, where our primary interest in this work .
Is to build prediction regions for multivariate time-series in the form of ellipsoids.

Table 2. Real-data comparison of test coverage and average prediction set size by different methods. The target coverage is 0.95, and
at each p, the smallest size of prediction sets is in bold. Our MultiDimSPCT yields the narrowest confidence sets without sacrificing
coverage for two reasons. First, it explicitly captures dependency among coordinates of Y; by forming ellipsoidal prediction sets. Second,
it captures temporal dependency among non-conformity scores upon adaptive re-estimation of score quantiles.

We assume a sequence of observations (X, Y;), t = 1,2,..., where Y; € R? are con- E
tinuous p-dimensional outputs and X € RY denote features, which may either be the
history of Y; or contain exogenous variables helpful in predicting the value of Y;. Given
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dpproximation 2 © y thuncating sihgiar vaiues o dt are smatier than p. assumptions on estimation quality of f and on tail behavior of eigenvalues of ¥ and X, reaching asymptotic valid p = 8 for the wind data. In each subplot of (a)-(c), the top row plots rolling coverage over prediction time
coverage indices (red dashed line is the target coverage) and as boxplots, and the bottom row shows results for
Algorithm 1 Multi-dimensional SPCT (MultiDimSPCI) ' rolling sizes.
Require: Training data {(X;,Y;)}. ,, prediction algorithm A, significance level a, quantile Theorem (When {gt} are i.i.d) References

regression algorithm @, positive threshold p > 0.

Ensure: Prediction intervals ét_l(Xt, a),t >T

1: Obtain f and residuals {&;}7_, C R? (computed on the holdout set) with A and {(Xy,Y;)}, R log(16T)

2: Compute non-conformity scores £ from {&;}]_; and >, using (2) ‘IP)(YTJrl c CT(XT+1) ‘ X7 = ng+1) —(1— @)‘ < 12\/ 5 4 4(LT € 1)(6’5 4 5T)-

3: for t > T do T
4:  Use quantile regression to obtain Q; + Q(Er)
5. Obtain uncertainty set Cy_1(Xy, ) as in (3).
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With probability 1 — 9, for any training size T and « € (0, 1), we have
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Obtain new residual &; (4]

Assume the true covariance matrix ¥ is known. For any training size T and o € (0 1) we have Chen Xu and Yao Xie. Sequential predictive conformal inference for time series. In Andreas Krause, Emma Brunskill,
. , 1),

Kyunghyun Cho, Barbara Engelhardt, Sivan Sabato, and Jonathan Scarlett, editors, Proceedings of the 40th International
Conference on Machine Learning, volume 202 of Proceedings of Machine Learning Research, pages 38/0/-387/27. PMLR,
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Update residual set {ét}le by adding &€; and removing the oldest one and update &
. end for N (%)1/3(1Og T)2/3
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