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Motivation and Problem Setup

Conformal prediction (CP) has become a popular distribution-free technique to perform

uncertainty quantification for complex machine learning algorithms. Recent works have

especially developed sequential CP methods for time-series (e.g., SPCI [4]). However,

most use cases focused on univariate time-series, where our primary interest in this work

is to build prediction regions for multivariate time-series in the form of ellipsoids.

We assume a sequence of observations (Xt, Yt), t = 1, 2, . . ., where Yt ∈ Rp are con-

tinuous p-dimensional outputs and Xt ∈ Rd denote features, which may either be the

history of Yt or contain exogenous variables helpful in predicting the value of Yt. Given

T training data and a user-specified significance level α ∈ [0, 1], we want to create

prediction intervals Ĉt−1(Xt) sequentially (at level α) such that

P(Yt ∈ Ĉt−1(Xt)|Xt) → 1 − α as T → ∞. (1)

We differ from past works in the following aspects. First, compared to copula-based

methods [3] which build hyper-rectangular prediction regions, our construction of ellip-

soids is more direct and simple, as we avoid having to optimize the copula choice and

design. Second, compared to probabilistic forecasting approaches [1], our CP-based

methods have theoretical guarantees and are model-agonostic. We will demonstrate

empirical benefits over both approaches.

Table 1. A 2 × 2 taxonomy of conformal prediction approaches (not an exhaustive list), categorized based

on the dimension of the response variable Y (rows) and data assumptions (columns).

Exchangeable Non-exchangeable

Univariate Y
(Volkhonskiy et al., 2017)

(Barber et al., 2021; Kim et al., 2020)

(Zaffran et al., 2022; Xu & Xie, 2023a)

(Xu & Xie, 2023b; Barber et al., 2023)

Multivariate Y
(Messoudi et al., 2021; Diquigiovanni et al., 2022)

(Johnstone & Ndiaye, 2022; Feldman et al., 2023)

Ours

(Stankeviciute et al., 2021; Sun

Yu, 2024)

Our approach

The main novelty of MultiDimSPCI is the design of non-conformity scores that explicitly

take into account the entry-level dependency in Yt, with subsequent construction of

ellipsoidal prediction regions using the scores.

More precisely, let ε̂t = Yt − f̂(Xt) be the continuous prediction residual in Rp and let

Σ̂ ∈ Rp×p be the corresponding covariance estimator over the prediction residuals. Note

that when p is large, Σ̂ may not be invertible. Hence, given ρ > 0, we consider a low-rank

approximation Σ̂ρ of Σ̂ by truncating singular values of Σ̂ that are smaller than ρ.

Algorithm 1 Multi-dimensional SPCI (MultiDimSPCI)

Require: Training data {(Xt, Yt)}Tt=1, prediction algorithm A, significance level ↵, quantile
regression algorithm Q, positive threshold ⇢ > 0.

Ensure: Prediction intervals bCt�1(Xt,↵), t > T

1: Obtain f̂ and residuals {"̂t}Tt=1 ⇢ Rp (computed on the holdout set) with A and {(Xt, Yt)}Tt=1

2: Compute non-conformity scores ET from {"̂t}
T
t=1 and b⌃⇢ using (2)

3: for t > T do

4: Use quantile regression to obtain bQt  Q(ET )
5: Obtain uncertainty set bCt�1(Xt,↵) as in (3).
6: Obtain new residual "̂t
7: Update residual set {"̂t}Tt=1 by adding "̂t and removing the oldest one and update ET

8: end for

where � is the CDF of N (0, 1) and �2(·;) is the joint CDF of N (0,⌃). Note that the bivariate

Gaussian copula is parametric, assuming the marginal and joint distributions follow Gaussian

distributions.

In conformal prediction, copula has been used to calibrate the coordinate-wise quantile of

prediction residuals. Let |"̂tj | be the j-th coordinate of the t-th prediction residual in absolute value,

and let Ftj be its marginal distribution. Then, past works (Messoudi et al., 2021) fit a copula Ct

to the p-dimensional random vector (|"̂t1|, . . . , |"̂tp|). Specifically, they find (ut1, . . . , utp) 2 [0, 1]p

so that

P(|"̂t1|  F
�1
t1 (ut1), . . . , |"̂tp|  F

�1
tp (utp)) = Ct(ut1, . . . , utp) = 1� ↵,

where ↵ is a pre-specified significance level (e.g., ↵ = 0.05). In practice, Ftj is unknown so it is

replaced by F̂tj , the empirical distribution defined using past residuals, and the values (ut1, . . . , utp)

are found under special assumptions (e.g., ut1 = . . . = utp (Messoudi et al., 2021)) or searched via

stochastic gradient descent (Sun & Yu, 2024).

We remark two main di↵erences between copula conformal prediction and our proposed

MultiDimSPCI. First, the use of copula CP requires searching for multi-dimensional vectors

ut = (ut1, . . . , utp) at each t, whose e�ciency and accuracy also highly depends on the choice of

copula Ct. How to design copula and search for the best ut remains unclear. In contrast, our

MultiDimSPCI requires much less design e↵ort, as it only uses an estimation of the covariance

matrix of residuals {"̂t}. Second, note that copula CP returns hyper-rectangular prediction sets,

as the method constructs one prediction interval at each p coordinates. Such hyper-rectangular

sets can be too large compared to ellipsoidal sets, as we experimentally find ours are significantly

smaller without a↵ecting test coverage (see Section 5.2).
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Figure 1. Comparison of multivariate CP method on real two-dimensional wind data. Left (a): Empirical copula [2] which constructs

coordinate-wise prediction intervals. Middle (b): Spherical confidence set introduced in [3]. Right (c): our proposed ellipsoidal confidence set

via MultiDimSPCI. While all methods yield coverage at least above the target 95% on test data, our method yields the smallest average size.

Given a candidate value Y ∈ Rp, let ε̂ = Y − f̂ (X) be the new residual. Using the pseudo-inverse Σ̂−1
ρ of the low-rank

approximation, we then define the scalar non-conformity score e(Y ) as

ê(Y ) = (ε̂ − ε̄)T Σ̂−1
ρ (ε̂ − ε̄), (2)

where ε̄ is the mean of prediction residual. Using Σ̂−1
ρ , which is always well-defined, an ellipsoid with radius r can thus

be written as. B(r, ε̄, Σ̂ρ) = {x ∈ Rp : (x − ε̄)T Σ̂−1
ρ (x − ε̄) ≤ r}. Thus, the prediction region Ĉt−1(Xt) ⊂ Rp for a given

confidence level α takes the form

Ĉt−1(Xt) = {Y : Q̂t(β̂) ≤ ê(Y ) ≤ Q̂t(1 − α + β̂)} (3)

= f̂ (Xt) + B(
√

Q̂t(1 − α + β̂), ε̄, Σ̂ρ) \ B(
√

Q̂t(β̂), ε̄, Σ̂ρ)
β̂ = arg min

β∈[0,α]
V (Σ̂ρ, Q̂t(1 − α + β)) − V (Σ̂ρ, Q̂t(β)) (V is volume of B) (4)

In (3), Q̂t denotes a fitted quantile regressor on the non-conformity score, following SPCI.

Theoretical guarantee

Let Yt ∈ Rp follow Yt = f(Xt) + εt, where f is an unknown function and εt is the noise. We can obtain different

bounds on the coverage gap under different dependency assumptions on {εt} and on the eigenvalue behavior of

Σ = Cov(εt) and Σ̂ = Cov(ε̂t). In particular, (LT , Cδ, δT ) in the coverage gaps converge to zero under additional

assumptions on estimation quality of f and on tail behavior of eigenvalues of Σ and Σ̂, reaching asymptotic valid
coverage.

Theorem (When {εt} are i.i.d)

With probability 1 − δ, for any training size T and α ∈ (0, 1), we have

|P(YT+1 ∈ ĈT (XT+1) | XT+1 = xT+1) − (1 − α)| ≤ 12

√
log(16T )

T
+ 4(LT + 1)(Cδ + δT ). (5)

Theorem (When {εt} are stationary and strongly mixing)

Assume the true covariance matrix Σ is known. For any training size T and α ∈ (0, 1), we have

|P(YT+1 ∈ ĈT (XT+1) | XT+1 = xT+1) − (1 − α)| ≤ 12
(M

2 )1/3(log T )2/3

T 1/3 + 4(LT + 1)
(

δT√
λ

+ δT

)
. (6)

Experiments

We demonstrate the advantage of MultiDimSPCI against a wide range of CP methods

and existing probabilistic forecasting approaches based on deep neural networks (NN).

We consistently observed that MultiDimSPCI can maintain valid empirical coverage

at 1 − α and generate prediction regions that have significantly smaller volumes than

baselines, especially in high dimensions.
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Table 2. Real-data comparison of test coverage and average prediction set size by different methods. The target coverage is 0.95, and
at each p, the smallest size of prediction sets is in bold. Our MultiDimSPCI yields the narrowest confidence sets without sacrificing
coverage for two reasons. First, it explicitly captures dependency among coordinates of Yt by forming ellipsoidal prediction sets. Second,
it captures temporal dependency among non-conformity scores upon adaptive re-estimation of score quantiles.

(a) Wind data

Method p = 2 coverage p = 2 size p = 4 coverage p = 4 size p = 8 coverage p = 8 size
MultiDimSPCI 0.97 1.60 0.96 7.02 0.96 72.10

CopulaCPTS (Sun & Yu, 2024) 0.98 2.55 0.97 10.23 0.97 252.67
Local ellipsoid (Messoudi et al., 2022) 0.96 3.51 0.97 13.07 0.98 1.09e+3

Copula (Messoudi et al., 2021) 0.98 2.81 0.98 10.32 0.97 1.60e+3
TFT (Lim et al., 2021) 0.94 10.61 0.75 159.39 0.94 2.91e+4

DeepAR (Salinas et al., 2020) 0.96 7.07 0.76 67.97 0.96 1.79e+5
(b) Solar data

Method p = 2 coverage p = 2 size p = 4 coverage p = 4 size p = 8 coverage p = 8 size
MultiDimSPCI 0.96 1.68 0.96 2.89 0.97 4.97

CopulaCPTS (Sun & Yu, 2024) 0.99 4.36 0.99 37.56 0.99 3.28e+3
Local ellipsoid (Messoudi et al., 2022) 0.97 1.32 0.97 3.20 0.97 43.07

Copula (Messoudi et al., 2021) 0.99 4.11 0.99 27.73 0.99 1.42e+3
TFT (Lim et al., 2021) 0.99 13.68 0.99 71.72 0.93 1.19e+3

DeepAR (Salinas et al., 2020) 0.97 10.76 0.98 157.09 0.74 31.82
(c) Traffic data

Method p = 2 coverage p = 2 size p = 4 coverage p = 4 size p = 8 coverage p = 8 size
MultiDimSPCI 0.96 1.31 0.96 1.93 0.96 2.98

CopulaCPTS (Sun & Yu, 2024) 0.95 1.70 0.94 3.15 0.95 14.10
Local ellipsoid (Messoudi et al., 2022) 0.95 1.36 0.94 2.08 0.95 4.13

Copula (Messoudi et al., 2021) 0.95 1.44 0.95 3.90 0.94 40.60
TFT (Lim et al., 2021) 0.89 9.07 0.93 87.92 0.88 9.69e+2

DeepAR (Salinas et al., 2020) 0.87 13.53 0.88 57.20 0.82 9.89e+3

Table 3. Simulation results by both methods. Target coverage is 90%. Standard deviation is computed over ten independent trials in which
training and test data are regenerated.

(a) Independent AR(w)

p 2 4 8 10 16 20
Method MultiDim

SPCI
SPCI MultiDim

SPCI
SPCI MultiDim

SPCI
SPCI MultiDim

SPCI
SPCI MultiDim

SPCI
SPCI MultiDim

SPCI
SPCI

Coverage 90.0%
(0.26)

90.0%
(0.29)

90.0%
(0.25)

89.9%
(0.14)

90.0%
(0.31)

89.9%
(0.30)

89.8%
(0.25)

89.8%
(0.27)

89.9%
(0.24)

89.9%
(0.23)

90.0%
(0.26)

89.8%
(0.30)

Size 1.45e+1
(9.34e-2)

1.52e+1
(8.73e-2)

3.00e+2
(2.62e+0)

3.94e+2
(3.38e+0)

1.30e+5
(1.43e+3)

3.68e+5
(6.44e+3)

2.65e+6
(4.79e+4)

1.22e+7
(1.61e+5)

2.23e+10
(5.61e+8)

5.84e+11
(1.39e+10)

9.15e+12
(2.97e+11)

8.67e+14
(2.90e+13)

(b) VAR(w)

p 2 4 8 10 16 20
Method MultiDim

SPCI
SPCI MultiDim

SPCI
SPCI MultiDim

SPCI
SPCI MultiDim

SPCI
SPCI MultiDim

SPCI
SPCI MultiDim

SPCI
SPCI

Coverage 90.0%
(0.26)

92.7%
(0.25)

90.2%
(0.21)

91.5%
(0.22)

90.0%
(0.23)

91.6%
(0.18)

89.9%
(0.23)

90.7%
(0.31)

89.9%
(0.20)

91.0%
(0.19)

90.0%
(0.25)

90.9%
(0.19)

Size 2.73e+0
(1.36e-2)

6.46e+0
(5.84e-2)

3.89e+1
(2.25e-1)

4.94e+2
(7.49e+0)

7.16e+4
(7.25e+2)

9.27e+6
(1.46e+5)

3.63e+7
(4.79e+5)

3.24e+9
(6.09e+7)

8.55e+12
(1.45e+11)

1.91e+17
(5.38e+15)

1.14e+16
(2.11e+14)

7.41e+22
(1.68e+21)

Data generation. Denote Yt = [Yi1, . . . , Yip]T 2 Rp for
p � 2. We generate Yt as

Yt =
wX

l=1

↵lYi�l + "t, "t ⇠ N(0,⌃). (19)

In (19), ↵l 2 Rp⇥p contains the set of coefficients, where
we further construct them so that the sequences {Yt} are sta-
tionary. In the first case of independent AR(w) sequences,

we have ⌃ = Ip. In the second case of VAR(w) sequences,
we design ⌃ = BB

T to be a positive definite covariance
matrix, where Bij

i.i.d.
⇠ Unif[�1, 1].

Setup. In both cases of AR and VAR time series follow-
ing (19), we let w = 5 and vary p 2 {2, 4, 8, 10, 16, 20}.
The initial 80K samples {Yt} are training data; the remain-
ing 20K samples are test data. Because SPCI assumes
independence across different univariate sequence, we let
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Figure 2. Real-data comparison of rolling coverage (target coverage is 95%) and size of prediction sets at

p = 8 for the wind data. In each subplot of (a)-(c), the top row plots rolling coverage over prediction time

indices (red dashed line is the target coverage) and as boxplots, and the bottom row shows results for

rolling sizes.
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