Conformal prediction for multi-dimensional time series by ellipsoidal sets

Chen Xu, Hanyang Jiang, Yao Xie

H. Milton Stewart School of Industrial and Systems Engineering Georgia Institute of Technology

Motivation and objective

- Construct prediction regions for multivariate time-series.
- Conformal prediction (CP) has been gaining popularity (distribution-free and model-free).

Motivation and objective

- Construct prediction regions for multivariate time-series.
- Conformal prediction (CP) has been gaining popularity (distribution-free and model-free).
- Existing approaches can be conservative.

Motivation and objective

- Construct prediction regions for multivariate time-series.
- Conformal prediction (CP) has been gaining popularity (distribution-free and model-free).
- Existing approaches can be conservative.

Goal: Develop sequential CP methods for multivariate time-series that jointly capture the dependency among time-series.

Related works

• Univariate sequential CP: leverage feedback during prediction (Xu & Xie, 2021; Gibbs & Candes, 2021; Xu & Xie, 2023; Angelopoulos et al., 2024).

• Multivariate CP (Messoudi et al., 2021, 2022; Johnstone & Ndiaye, 2022; Sun & Yu, 2024).

• Probabilistic forecasting via quantile regression: (Salinas et al., 2020; Lim et al., 2021)

Related works

• Univariate sequential CP: leverage feedback during prediction (Xu & Xie, 2021; Gibbs & Candes, 2021; Xu & Xie, 2023; Angelopoulos et al., 2024).

• Multivariate CP (Messoudi et al., 2021, 2022; Johnstone & Ndiaye, 2022; Sun & Yu, 2024).

• Probabilistic forecasting via quantile regression: (Salinas et al., 2020; Lim et al., 2021)

Challenge: effectively account for dependency across space and time.

• In essence, MultiDimSPCI handles dependency in

- (1) Space through ellipsoidal prediction sets.
- (2) $\overline{\text{Time}}$ through the sequential SPCI (Xu & Xie, 2023).

- In essence, MultiDimSPCI handles dependency in
- (1) Space through ellipsoidal prediction sets.
- (2) $\overline{\text{Time}}$ through the sequential SPCI (Xu & Xie, 2023).

• Data $(X_t, Y_t), Y_t \in \mathbb{R}^p$ arrive sequentially and we train a point predictor \hat{f} and obtain *prediction* residuals $\hat{\epsilon}$ on first T samples (Papadopoulos et al., 2007; Xu & Xie, 2021).

- In essence, MultiDimSPCI handles dependency in
- (1) Space through ellipsoidal prediction sets.
- (2) $\overline{\text{Time}}$ through the sequential SPCI (Xu & Xie, 2023).

• Data $(X_t, Y_t), Y_t \in \mathbb{R}^p$ arrive sequentially and we train a point predictor \hat{f} and obtain *prediction* residuals $\hat{\epsilon}$ on first T samples (Papadopoulos et al., 2007; Xu & Xie, 2021).

• Let $\widehat{\Sigma} \in \mathbb{R}^{p \times p}$ be the empirical covariance of $\hat{\epsilon}$ and $\widehat{\Sigma}_{\rho}$ be the low-rank approximation of $\widehat{\Sigma}$.

- In essence, MultiDimSPCI handles dependency in
- (1) Space through ellipsoidal prediction sets.
- (2) $\overline{\text{Time}}$ through the sequential SPCI (Xu & Xie, 2023).

• Data $(X_t, Y_t), Y_t \in \mathbb{R}^p$ arrive sequentially and we train a point predictor \hat{f} and obtain *prediction* residuals $\hat{\epsilon}$ on first T samples (Papadopoulos et al., 2007; Xu & Xie, 2021).

• Let $\widehat{\Sigma} \in \mathbb{R}^{p \times p}$ be the empirical covariance of $\hat{\epsilon}$ and $\widehat{\Sigma}_{\rho}$ be the low-rank approximation of $\widehat{\Sigma}$.

 \bullet Define non-conformity score e(Y) for a candidate value Y as

$$\hat{e}(Y) = (\hat{\varepsilon} - \bar{\varepsilon})^T \widehat{\Sigma}_{\rho}^{-1} (\hat{\varepsilon} - \bar{\varepsilon}),$$

where $\hat{\varepsilon} = Y - \hat{f}(X)$ and $\bar{\varepsilon}$ is the mean of $\hat{\epsilon}.$

Proposed MultiDimSPCI (cont.)

 \bullet The ellipsoidal prediction region $\widehat{C}_{t-1}(X_t)$ at level α is

$$\{Y: \widehat{Q}_{t}(\widehat{\beta}) \leq \widehat{e}(Y) \leq \widehat{Q}_{t}(1 - \alpha + \widehat{\beta})\}$$
(1)
= $\widehat{f}(X_{t}) + \mathcal{B}(\sqrt{\widehat{Q}_{t}(1 - \alpha + \widehat{\beta})}, \overline{\varepsilon}, \widehat{\Sigma}_{\rho}) \setminus \mathcal{B}(\sqrt{\widehat{Q}_{t}(\widehat{\beta})}, \overline{\varepsilon}, \widehat{\Sigma}_{\rho}))$
 $\widehat{\beta} = \underset{\beta \in [0, \alpha]}{\operatorname{arg\,min}} V(\widehat{\Sigma}_{\rho}, \widehat{Q}_{t}(1 - \alpha + \beta)) - V(\widehat{\Sigma}_{\rho}, \widehat{Q}_{t}(\beta))$ (2)

where \widehat{Q}_t is the quantile regressor and V denotes the volume of an ellipsoid $\mathcal{B}(r, \bar{\varepsilon}, \widehat{\Sigma}_{\rho}) = \{x \in \mathbb{R}^p : (x - \bar{\varepsilon})^T \widehat{\Sigma}_{\rho}^{-1} (x - \bar{\varepsilon}) \leq r\}.$

Proposed MultiDimSPCI (cont.)

• The ellipsoidal prediction region $\widehat{C}_{t-1}(X_t)$ at level α is

$$\{Y: \widehat{Q}_{t}(\widehat{\beta}) \leq \widehat{e}(Y) \leq \widehat{Q}_{t}(1 - \alpha + \widehat{\beta})\}$$
(1)
= $\widehat{f}(X_{t}) + \mathcal{B}(\sqrt{\widehat{Q}_{t}(1 - \alpha + \widehat{\beta})}, \overline{\varepsilon}, \widehat{\Sigma}_{\rho}) \setminus \mathcal{B}(\sqrt{\widehat{Q}_{t}(\widehat{\beta})}, \overline{\varepsilon}, \widehat{\Sigma}_{\rho}))$
 $\widehat{\beta} = \underset{\beta \in [0, \alpha]}{\operatorname{arg min}} V(\widehat{\Sigma}_{\rho}, \widehat{Q}_{t}(1 - \alpha + \beta)) - V(\widehat{\Sigma}_{\rho}, \widehat{Q}_{t}(\beta))$ (2)

where \widehat{Q}_t is the quantile regressor and V denotes the volume of an ellipsoid $\mathcal{B}(r, \bar{\varepsilon}, \widehat{\Sigma}_{\rho}) = \{x \in \mathbb{R}^p : (x - \bar{\varepsilon})^T \widehat{\Sigma}_{\rho}^{-1} (x - \bar{\varepsilon}) \leq r\}.$

• Regions in (1) are sequentially constructed on updated $\hat{\epsilon}$, using adaptively re-fitted \hat{Q}_t .

Remarks on MultiDimSPCI

• Benefits:

 \bullet MultiDimSPCI can be used with any base model \widehat{f} and quantile regressor $\widehat{Q}_t.$

• The ellipsoids have simple forms and are efficiently constructed.

Remarks on MultiDimSPCI

• Benefits:

 \bullet MultiDimSPCI can be used with any base model \widehat{f} and quantile regressor $\widehat{Q}_t.$

• The ellipsoids have simple forms and are efficiently constructed.

• Differences:

• Versus copula-based CP methods: smaller prediction regions with less design choices.

• Versus Prob. forecasting methods: improved performance with theoretical guarantees.

• Extend analyses in EnbPI (Xu & Xie, 2021) to $Y_t \in \mathbb{R}^p$.

- Extend analyses in EnbPI (Xu & Xie, 2021) to $Y_t \in \mathbb{R}^p$.
- We impose additional assumptions on the error process, so that $\widehat{\Sigma}$ converges to Σ in the operator norm.

• Extend analyses in EnbPI (Xu & Xie, 2021) to $Y_t \in \mathbb{R}^p$.

• We impose additional assumptions on the error process, so that $\widehat{\Sigma}$ converges to Σ in the operator norm.

• We then obtain finite-sample bound on the absolute coverage gap $|\mathbb{P}(Y_t \in \widehat{C}_{t-1}(X_t)|X_t) - (1-\alpha)|.$

- Extend analyses in EnbPI (Xu & Xie, 2021) to $Y_t \in \mathbb{R}^p$.
- We impose additional assumptions on the error process, so that $\widehat{\Sigma}$ converges to Σ in the operator norm.
- We then obtain finite-sample bound on the absolute coverage gap $|\mathbb{P}(Y_t \in \widehat{C}_{t-1}(X_t)|X_t) (1-\alpha)|.$
- Guarantee bounds the worst-case deviation, while empirical coverage is almost always $\geq 1 \alpha$.

Experiments (simulation)

• Compare MultiDimSPCI against SPCI (Xu & Xie, 2023), which is applied entry-wise with $\tilde{\alpha} = 1 - (1 - \alpha)^{1/p}$ per dimension.

Table 3. Simulation results by both methods. Target coverage is 90%. Standard deviation is computed over ten independent trials in which training and test data are regenerated.

p	8		10		16		20					
Method	MultiDim	SPCI	MultiDim	SPCI	MultiDim	SPCI	MultiDim	SPCI				
	SPCI	(entry-wise)	SPCI	(entry-wise)	SPCI	(entry-wise)	SPCI	(entry-wise)				
Coverage	90.0% (0.31)	89.9% (0.30)	89.8% (0.25)	89.8% (0.27)	89.9% (0.24)	89.9% (0.23)	90.0% (0.26)	89.8% (0.30)				
Size	1.30e+5	3.68e+5	2.65e+6	1.22e+7	2.23e+10	5.84e+11	9.15e+12	8.67e+14				
	(1.43e+3)	(6.44e+3)	(4.79e+4)	(1.61e+5)	(5.61e+8)	(1.39e+10)	(2.97e+11)	(2.90e+13)				
(b) $VAR(w)$												
p	8		10		16		20					
Method	MultiDim	SPCI	MultiDim	SPCI	MultiDim	SPCI	MultiDim	SPCI				
	SPCI	(entry-wise)	SPCI	(entry-wise)	SPCI	(entry-wise)	SPCI	(entry-wise)				
Coverage	90.0% (0.23)	91.6% (0.18)	89.9% (0.23)	90.7% (0.31)	89.9% (0.20)	91.0% (0.19)	90.0% (0.25)	90.9% (0.19)				
Size	7.16e+4	9.27e+6	3.63e+7	3.24e+9	8.55e+12	1.91e+17	1.14e+16	7.41e+22				
	(7.25e+2)	(1.46e+5)	(4.79e+5)	(6.09e+7)	(1.45e+11)	(5.38e+15)	(2.11e+14)	(1.68e+21)				

(a) Independent AR(w)

Experiments (real data)

Table 2. Real-data comparison of test coverage and average prediction set size by different methods. The target coverage is 0.95, and at each p, the smallest size of prediction sets is in **bold**. Our MultiDimSPCI yields the narrowest confidence sets without sacrificing coverage for two reasons. First, it explicitly captures dependency among coordinates of Y_b by forming ellipsoidal prediction sets. Second, it captures temporal dependency among non-conformity scores upon adaptive re-estimation of score quantiles.

Method	p = 2 coverage	p = 2 size	p = 4 coverage	p = 4 size	p = 8 coverage	p = 8 size					
MultiDimSPCI	0.97	1.60	0.96	7.02	0.96	72.10					
CopulaCPTS (Sun & Yu, 2024)	0.98	2.55	0.97	10.23	0.97	252.67					
Local ellipsoid (Messoudi et al., 2022)	0.96	3.51	0.97	13.07	0.98	1.09e+3					
Copula (Messoudi et al., 2021)	0.98	2.81	0.98	10.32	0.97	1.60e+3					
TFT (Lim et al., 2021)	0.94	10.61	0.75	159.39	0.94	2.91e+4					
DeepAR (Salinas et al., 2020)	0.96	7.07	0.76	67.97	0.96	1.79e+5					
(b) Solar data											
Method	p = 2 coverage	p = 2 size	p = 4 coverage	p = 4 size	p = 8 coverage	p = 8 size					
MultiDimSPCI	0.96	1.68	0.96	2.89	0.97	4.97					
CopulaCPTS (Sun & Yu, 2024)	0.99	4.36	0.99	37.56	0.99	3.28e+3					
Local ellipsoid (Messoudi et al., 2022)	0.97	1.32	0.97	3.20	0.97	43.07					
Copula (Messoudi et al., 2021)	0.99	4.11	0.99	27.73	0.99	1.42e+3					
TFT (Lim et al., 2021)	0.99	13.68	0.99	71.72	0.93	1.19e+3					
DeepAR (Salinas et al., 2020)	0.97	10.76	0.98	157.09	0.74	31.82					
(c) Traffic data											
Method	p = 2 coverage	p = 2 size	p = 4 coverage	p = 4 size	p = 8 coverage	p = 8 size					
MultiDimSPCI	0.96	1.31	0.96	1.93	0.96	2.98					
CopulaCPTS (Sun & Yu, 2024)	0.95	1.70	0.94	3.15	0.95	14.10					
Local ellipsoid (Messoudi et al., 2022)	0.95	1.36	0.94	2.08	0.95	4.13					
Copula (Messoudi et al., 2021)	0.95	1.44	0.95	3.90	0.94	40.60					
TFT (Lim et al., 2021)	0.89	9.07	0.93	87.92	0.88	9.69e+2					
DeepAR (Salinas et al., 2020)	0.87	13.53	0.88	57.20	0.82	9.89e+3					

(a) Wind data

Experiments (real data)

• Similar rolling coverage with significantly narrower and more stable sizes of prediction regions.

Summary

- The main novelty of MultiDimSPCI lies in jointly capturing spatial and temporal dependency in multivariate time-series.
- Against existing multivariate CP and probabilistic forecasting approaches, MultiDimSPCI returns much smaller prediction regions with no coverage loss.
- In the future, we will test the approach on more datasets with improved quantile estimation approaches.

References I

Angelopoulos, A., Candes, E., and Tibshirani, R. J. Conformal pid control for time series prediction. *Advances in Neural Information Processing Systems*, 36, 2024.

- Gibbs, I. and Candes, E. Adaptive conformal inference under distribution shift. *Advances in Neural Information Processing Systems*, 34:1660–1672, 2021.
- Johnstone, C. and Ndiaye, E. Exact and approximate conformal inference in multiple dimensions. *arXiv preprint arXiv:2210.17405*, 2022.
- Lim, B., Arık, S. Ö., Loeff, N., and Pfister, T. Temporal fusion transformers for interpretable multi-horizon time series forecasting. *International Journal of Forecasting*, 37(4):1748–1764, 2021.
- Messoudi, S., Destercke, S., and Rousseau, S. Copula-based conformal prediction for multi-target regression. *Pattern Recognition*, 120:108101, 2021.

References II

- Messoudi, S., Destercke, S., and Rousseau, S. Ellipsoidal conformal inference for multi-target regression. In *Conformal and Probabilistic Prediction with Applications*, pp. 294–306. PMLR, 2022.
- Papadopoulos, H., Vovk, V., and Gammerman, A. Conformal prediction with neural networks. In 19th IEEE International Conference on Tools with Artificial Intelligence(ICTAI 2007), volume 2, pp. 388–395, 2007.
- Salinas, D., Flunkert, V., Gasthaus, J., and Januschowski, T. Deepar: Probabilistic forecasting with autoregressive recurrent networks. *International Journal of Forecasting*, 36(3):1181–1191, 2020.
- Sun, S. H. and Yu, R. Copula conformal prediction for multi-step time series prediction. In *The Twelfth International Conference* on Learning Representations, 2024. URL https://openreview.net/forum?id=ojIJZDNIBj.

References III

- Xu, C. and Xie, Y. Conformal prediction interval for dynamic time-series. In *International Conference on Machine Learning*, pp. 11559–11569. PMLR, 2021.
- Xu, C. and Xie, Y. Sequential predictive conformal inference for time series. In Krause, A., Brunskill, E., Cho, K., Engelhardt, B., Sabato, S., and Scarlett, J. (eds.), *Proceedings of the 40th International Conference on Machine Learning*, volume 202 of *Proceedings of Machine Learning Research*, pp. 38707–38727. PMLR, 23–29 Jul 2023.