Optimal transport (OT) is a widely used technique for distribution alignmeht,)
with applications throughout the machine learning, graphics, and visign
communities. Without any additional structural assumptions on transpoft,
however, OT can be fragile to outliers or noise, especially in high dimensipn.
Here, we introduce Latent Optimal Transport (LOT), a new approach for OTjthjt
simultaneously learns low-dimensional structure in data while leveraging this]
structure to solve the alignment task. The idea behind our approach is to Igart
two sets of “anchors” that constrain the ow of transport between a source ad|
target distribution. In both theoretical and empirical studies, we show that LPT]|
regularizes the rank of transport and makes it more robust to outliers and fhq
sampling density. We show that by allowing the source and target to hgvd
di erent anchors, and using LOT to align the latent spaces betweenanchors, fh
resulting transport plan has better structural interpretability and highlighfs Visualized alignments with OT, LOT and factored couplings [1] with di erent number of anchors.
connections between both the individual data points and the local geometry pf
the datasets.
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_|—' *LOT is a low-rank transport leveraging data structures of the source and target.

*LOT is theoretical grounded in the objective and has fast sampling rate.
*We demonstrate that LOT can be e ectively used in domain transfer application. e e se s efofo e
« Future works include extension of LOT to graphical data and incorporation of metric learning. ~ %o... * St <G1°EZtt %o




