

Objective: Development of radiation tolerant electronics for operation in extreme environments

Why Gallium Nitride (GaN) devices?

- GaN has the capability to operate in extreme environments, unlike Silicon (Si)
- Wide-bandgap materials like GaN ($E_g = 3.2 \ eV$) are more resistant than materials like Si ($E_q = 1.1 \ eV$) to crystal defects caused by radiation due to the stronger bonds between atoms in the lattice

Project Outline

- Compact model robust enough to simulate device in circuit designs
- Develop process flow for digital and analog integrated circuits in The Ohio State University Nanotech West cleanroom
- Design and fabricate GaN-based ICs for sensing, communication & logic

GaN HEMT Device Modeling

• Use ASM-HEMT 101.0.0 -> an industry-standard physicsbased compact model used for power electronics and RF circuit simulation with GaN HEMTs (needs some modifications for digital & analog applications)

Drain Current Equation:

$$I_D = \frac{W}{L} \mu C_G \left((V_{GS} - V_{off}) - \psi_m + V_{th} \right)$$

- Modified model to automatically calculate V_{off} based on t_{barrier}
- Sufficiently thin $Al_xGa_{1-x}N$ barrier layer (~5 nm) able to simulate a device with a $V_{off} > 0$ (enhancement-mode)

for RF Probing

GaN PiN Diode Power Device

Radiation Tolerant GaN Electronics

Current Status of GaN Technology

- GaN devices are widely used in power electronics & RF applications due to their ability to handle large current densities, large electric fields before breakdown and high-frequency operation
- Driving GaN RF or power devices using traditional Si CMOS logic ICs leads to inductive and capacitive losses
- Si CMOS circuits are intolerant to crystal defects caused by radiation -> results in threshold-voltage shift and unreliable operation
- Solution: develop GaN devices and circuits for digital logic and integrate on one chip with power and RF devices for best efficiency

Circuit Simulation Framework

- Use Cadence Virtuoso -> CAD program for development of integrated circuits
- Simulated basic static logic gate structures using E/D mode scheme
- Extracted various performance metrics from simulated waveforms

Simulation Dimensions & Voltages:

- $L_{SG} = L_{GD} = 1 \ \mu m$
- $L_{Driver} = L_{Load} = 750 \, nm$
- $W_{Driver} = 750 \mu m = 10 * W_{Load}$
- $V_{off-Driver} = 0.9 V$
- $V_{off-Load} = -2 V$
- $V_{DD} = 1.8 V$

Performance Metric	Inverter	NAND	NOR
Propagation Delay	88.3 ps	106.4 ps	88.5 ps
Fall Time (90%->10%)	90.7 ps	192.9 ps	90.5 ps
Rise Time (10%->90%)	549.6 ps	498.8 ps	550.8 ps
Noise- Margin High	450.61 mV	393.84 mV	450.60 mV
Noise- Margin Low	936.99 mV	896.97 mV	937.01 mV
Swing	1.74 V	1.67 V	1.74 V
Average Power Dissipation	50 mW	49.3 mW	50 mW

