ETI Annual Workshop 2019, Nov. 5-6, Atlanta, GA

Organic photodiodes: towards largearea, low-cost photon counting platforms

Kippelen Research Group

School of Electrical and Computer Engineering

Georgia Tech

Thrust 3: Novel instrumentation and sensors

Light collection and materials

Light collection and detection Conversion Sources **PMTs** LEGACY **TECHNOLOGY** Si-PMs *α*, *β*, *γ*, n Scintillators Organic/hybrid **NEXT GENERATION:** photodiodes and scintillators 3

Solid-state photodetectors: cost, size, performance

Organic semiconductors for printed electronics

large area, flexible, light weight, AND high performance

Processing at room temperature onto any substrate: foil, plastic films, paper, elastomers

Semiconductors: organic and inorganic

Molecular properties

Highly localized electronic excitations

Morphology and structure difficult to define, disordered structures

Tolerant to defects

Lattice driven properties

Highly <u>delocalized</u> electronic excitations

Periodic lattice leads to well defined band

structures

Frontier molecular orbitals

Examples of Molecular Orbitals

π orbital

Drawings: courtesy of Wolfram Ratzke, Lupton Group, Univ. of Regensburg

HOMO-1

8

n orbital

Organic semiconductors: transport Levels

Solid-state organic optoelectronic devices

Electrodes for charge injection (OLED, OFET) or charge collection (OPV) are essential deviceenabling building blocks

Enabling technology: air-stable low work-function electrodes

Y. Zhou, S.R. Marder, J.L. Bredas, S. Graham, A. Kahn, B. Kippelen et al. Science, 336, 327 April 20 (2012).

Organic Photovoltaics: Untethered Power

Power conversion efficiencies of 17% demonstrated

Meng et al., Science 361, 1094–1098, 14 September (2018)

Organic photodiodes: beyond Si

Modeling of organic photodiodes

Devices are not perfect diodes: current in reverse bias limited by shunt resistance

M.B. Prince, J. Appl. Phys. 26, 534 (1955).

Dark current at low voltage

Conclusion and outlook

Recent results demonstrate that organic photodiodes have reached a level of performance that rivals that of silicon in all metrics except response time.

BUT WITH LARGE AREA AND LOWER COST

Future work will focus an amplification using impact ionization.

