The Consortium for Enabling Technologies and Innovation Virtual Summer Meeting for Young Researchers

Correlation of Irradiation Responses and Microstructures in AM 316 Stainless Steels

Miguel Pena, PhD student Texas A&M University

AM 316L SS preparation

Limited condition from Dr. Chen Sun at INL

316L SS Direct Energy Deposition process

LENS MTS 500 printer from Optomec Inc. 316L SS powders from John Galt Steel Laser power: 400W Scanning speed of 12.7 mm/s and Spot size of 600 µm in an argon atmosphere. Systematic matrix from Dr. Dan Thomas at UW-Madison

316L SS Powder Bed Fusion Process

S.No.	Laser Power (W)	Scanning Speed (mm/s)	Hatch Spacing (mm)	Layer Thickness (mm)	Volumetric Energy Density (J/mm3)
1	120	600	0.07	0.02	142.86
2	120	600	0.09	0.02	111.11
3	120	600	0.11	0.02	90.91
4	120	800	0.11	0.02	68.18
5	200	600	0.11	0.02	151.52
6	200	800	0.11	0.02	113.64
7	200	1300	0.11	0.02	69.93
8	260	800	0.11	0.02	147.73
9	260	1300	0.11	0.02	90.91

DED AM 316L

Diameter (µm)

DED AM 316L

DED AM 316L

Proton irradiated DED AM 316L

Proton irradiated DED AM 316L

UW- Madison PBF AM 316L

Printing parameters:

- Laser Power: 120 W
- Scanning Speed: 600 mm/s
- Hatch Spacing: 0.07 mm
- Layer Thickness: 0.02 mm

Before Polishing

Electropolishing parameters:

- Solution: 5% Perchloric Acid (HClO4) in Methanol
- Applied Voltage: 25 V
- Temperature: -35° C
- Polishing time: 12 s

DPA — Ion Distribution Helium implantation: 6.0 to speed up void formation 5.5 5.0 4.5 IHe Distribution [10⁴ ions] Ion beam condition 4.0 3.5 Beam: 100 keV He 3.0 Raster beam (X: 0.25Hz, Y: 3.43 Hz) 2.5 Beam area: 7mm x 8.5mm 2.0 Beam current: $3 \mu A (3.15 \times 10^{13} \text{ ions/cm}^2/\text{s})$ 1.5 Temperature: 300° C 1.0 Fluence: 1x10¹⁷ ions/cm² 0.5 0.0 50 100 150 200 250 300 350 400 450 500 550 600

Depth [nm]

mpena97@tamu.edu

0

2.8

2.6

2.4

2.2

2.0

1.8

1.6

1.4

1.2

1.0

0.8

0.6

0.4

0.2

0.0

DPA

After helium ion irradiation, using EBSD to guide FIB location: numerous site selective characterization to study swelling dependence on grain boundaries

101

Colors: 4° -10° Red 10° -20° Green 20° -30° Yellow 30° -40° Blue 40° -50° Fuchsia 50° -60° Aqua

TEM Results: Area without pore

Over-Focused

Left grain: α =-7.09 °, β =-4.73° Right grain: α =7.46 °, β =0.08° \triangle =15.32 °

Focused

50 nm

TEM Results: Area with pore

Over-Focused

Left grain: α =-7.09 °, β =-4.73° Right grain: α =7.46 °, β =0.08° ∆=15.32 °

Under-Focused

mpena97@tamu.edu

50 nm

TEM Results:

Under-Focused

Bubble aggregation can be observed at boundary in both areas.

No noticeable depletion zone: expected for small angle boundaries

He into Cu

Data taken from Han et al., 2012

Boundary sink efficiencies depend on boundary angles: to be tested in AM steels

Testing Matrix of UW-Madison 316L AM samples

Temperatur			
е	Irradiation	Status	Goal
300 C	Helium ion implantation to 1×10 ¹⁷ /cm ²	Irradiation completed, FIB/TEM delayed due to the virus	The key is to study void depletion as a function of boundary misorientation angles. The irradiation temperature is low avoid grain growth.
400 C	1 dpa proton irrad. 3 dpa proton 5 dpa proton	Irradiation finished FIB/TEM delayed due to the virus	The key is to study boundary segregation as a function of misorientation angles. The temperature is high enough to induce segregation, but low enough to avoid grain growth)
575 C	50 dpa Fe 100 dpa Fe 150 dpa Fe	Scheduled in July	The key is to swelling tolerance for multiple samples manufactured under different conditions. The temperature is at maximum swelling temperature.

Acknowledgement

This material is based upon work supported by the

Department of Energy/National Nuclear Security

Administration under Award Number DE-NA0003921.

ĘΤΙ

Duke

THE UNIVERSITY NORTH CAROLINA at CHAPEL HILL

A M

ational Nuclear Security Administration

PRINCETON PLASMA PHYSICS ABORATORY

Argon

NEVADA NATIONA

