The Consortium for Enabling Technologies and Innovation

Virtual Summer Meeting for Young Researchers

Safeguards and Spent Nuclear Fuel

Alexis Trahan, Ph.D.

Los Alamos National Laboratory July 7, 2020

International Safeguards

- The objective of safeguards is the timely detection of diversion of significant quantities of nuclear material from peaceful nuclear activities to the manufacture of nuclear weapons
- IAEA inspects nuclear facilities worldwide, monitors amounts of nuclear materials to ensure that it isn't going to illicit uses

atrahan@lanl.gov

LA-UR-20-24786

2

The Nuclear Fuel Cycle

* Reprocessing of spent nuclear fuel including MOX is not practiced in the U.S. Note: The NRC has no regulatory role in mining uranium.

Spent Fuel NDA: Objectives

- Verify operator declaration of residual uranium, and buildup of plutonium
 - Burnup
 - Initial enrichment
- Verify cooling time of assembly to assist with other parameters
- Verify completeness of assemblies

Spent Fuel NDA: Challenges

Interruptions to facility operations

Nuclear facilities have a standard way of operating and large disruptions (i.e. long measurements, drastic fuel movement) are not acceptable

Fuel inhomogeneity

Both axially and radially, neutron flux in the reactor affects burnup, resulting in inhomogeneous fuel assemblies

Competing parameters

5

Power Reactor vs. Research Reactor

	Power	Research
Size	~4 m long, 20 cm across, 1000 lbs	~80 cm long, 8 cm across, 13 lbs
Neutrons	~1E8 1/s	~1E4 1/s
Neutron Emitters	²⁴² Cm, ²⁴⁴ Cm, ²⁴⁰ Pu	²⁴⁰ Pu
Operating History	Predictable, \$\$\$	Unpredictable, research
Easy Availability of Calibration Standards?	Nope!	Nope!

Advanced Experimental Fuel Counter

- Designed for research reactor fuel characterization
- System uses:
 - Active and passive neutron coincidence counting
 - An ion chamber for gross gamma-ray counting
- Measurement objective is to verify residual fissile mass (i.e., ²³⁵U + ²³⁹Pu) using neutron coincidence counting
- Field trials have occurred as follows:
 - 2006 High Flux Australian Reactor (HIFAR), Australia,
 - 2011 Institute of Nuclear Physics (INP), Uzbekistan
 - 2014 Institute of Nuclear Physics (INP), Uzbekistan
 - 2018 Soreq Nuclear Research Center, IRR-1, Israel

Neutron Coincidence Counting

8

Rossi-Alpha Distribution

Advanced Experimental Fuel Counter

- Model Predict Measure Compare
 - In other words, develop a simulated calibration curve
- Simulated hundreds of spent fuel assemblies representing a wide range of depletion, cooling time, and operating history parameters
- "Measure" the simulated assemblies in the top, middle, and bottom positions in the AEFC
- Create calibration curve of fissile mass vs. net active doubles rate

Acknowledgement

This work was funded in part by the Department of Energy's National Nuclear Security Administration, Office of Nonproliferation and Arms Control (NPAC), NA-24.

