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Introduction/Bio
• Just completed my fifth year of graduate studies at Duke 

University under Prof. Lawrence Carin
• Work with Chemistry – Physical Chemistry and Advanced 

Spectroscopy Group at Los Alamos National Laboratory
• Focus on applications of deep learning and machine

learning – computer vision and natural language processing
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Gaseous Plume Detection
• Airborne hyperspectral LWIR imaging yields wealth of information about terrain 

and environment
• Goal: use such data to detect and identify areas with fugitive gases

Example detected Butane plume from Chevron El Segundo Oil Refinery. Image from Buckland et al (2017)
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HSI Data-Processing Pipeline
• Sensor collects radiance data which is calibrated and preprocessed before 

detection/identification
• Bad pixel replacement, Atmospheric compensation, data whitening

• Spectral signatures of chemical species are collected via laboratory characterizations
• These spectral libraries are used to construct the filters from which detection/identification occurs
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Spectral Signature Matching
• Comparison to library spectra underpins current detection + identification techniques

• Currently: these libraries are used to create spectral matched filters for detection and for fitting 
stepwise least-squares (SWLQ) identification models

• Deep Learning: convolutional filters are trained to activate on features in spectral responses

Example fit of a detected plume for two gaseous species. The key takeaway is from the top series, which 
shows the library spectra for Ammonia/CO2 and demonstrates what we are comparing against. 

Image from Buckland et al (2017)



ETI Virtual Summer Meeting for Young Researchers

6gregory.spell@duke.edu

Deep Learning Mitigation
• Deep Learning algorithms approximate complex data mappings from input 

to output
• Supervised methods: use labeled data to learn model parameters for 

feature extraction and prediction
• Complication: we do not have exact labels. Instead, we have spectral 

libraries to match to
• We can use the spectral libraries to generate data from which to train a 

neural network for chemical species classification (identification)
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Training Data Generation
• We synthesize training data by whitening the spectral libraries

• The whitening transform comes from the atmospherically compensated and whitened 
HSI datacubes (i.e., from the preprocessing of the data)

• Essentially, inner product of  the spectral libraries with the whitening matrix for each 
datacube

• Doing this essentially “applies” the atmosphere of the real data to each 
characterized gas in the library
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Deep Learning Classification of Gas Species
• We employ a cascade of convolutional layers to extract features from the 

preprocessed/whitened data of a region-of-interest (ROI)
• Convolutions occur over the spectral dimension of the ROI (standard deep learning for 

images operates over spatial dimensions)
• Input is an average of whitened radiance for pixels in ROI (e.g., we do classification 

pixelwise, over ROI superpixels)

• A fully-connected network and softmax layer are used to classify features

Calibration &
Data Conditioning

Atmospheric
Compensation

Detect
ROIs

Identify
ROIs

Classified
ROIs

Spectral
Libraries Deep Learning Inserted Here

(matched filters) (least-squares)(physical model)



ETI Virtual Summer Meeting for Young Researchers

9gregory.spell@duke.edu

Classification Results/Comparison
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Results Commentary
• BMA – Bayesian Model Averaging (currently used for classification)
• DHY  - Deep Hyperspectral Model (proposed model)
• We expect that species predicted frequently are false-alarms

• We wish to predict these less frequently
• Notice that DHY model predicts these species with a lower probability
• Indicates that DHY model is “less sure” of these predictions, which is good if we don’t 

want to alarm on them – we can use thresholding
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