The Consortium for Enabling Technologies and Innovation Virtual Summer Meeting for Young Researchers

INTRODUCTORY BAYESIAN APPROACH TO GAMMA SPECTRA ANALYSIS FOR ISOTOPIC IDENTIFICATION

Ryan Lester, The University Of Texas At Austin Cole Thompson, The University Of Texas At Austin

Disclaimer: This work was done as part of an AI for Engineering workshop and was not funded by ETI.

What is PGAA?

- Concept
- Challenges

Step 1: Establish Background

 Loading and parsing dataset

- around a Region of Interest (ROI)
- Plot showing ٠

Step 2a:

Materials

PGAA Database

- Material selection
- Materials present
- List of most likely cross-section and material

	Α	isotope	Ζ	Т	Gamma Energy	Gamma Energy Value	Sigma	Sigma Value	Uncertainty	Knaught	Knaught value	Knaught unc
0) 1	2-H	1	р	2223.24835(9)	2223.248	0.3326(7)	3.326000e-01	7.000000e-04	1.0000(21)	1.000000e+00	2.100000e-03
1	2	3-H	1	р	6250.243(3)	6250.243	0.000519(7)	5.190000e-04	7.000000e-06	0.001560(21)	1.560000e-03	2.100000e-05
2	3	4-He	2	р	20520.5	20520.460	4.2E-11(12)	4.200000e-11	1.200000e-11	3.2E-11(9)	3.180000e-11	9.090000e-12
3	6	7-Li	3	р	477.595(3)	477.595	0.00153(8)	1.530000e-03	8.00000e-05	0.00067(4)	6.680000e-04	3.490000e-05
4	6	7-Li	3	p	6768.81(4)	6768.810	0.00151(9)	1.510000e-03	9.000000e-05	0.00066(4)	6.590000e-04	3.930000e-05

	Α	isotope	Z	T	Gamma Energy	Gamma Energy Value	Sigma	Sigma Value	Uncertainty	Knaught	Knaught value	Knaught unc
31611	238	239-U	92	p	4118.54(5)	4118.54	0.00148(15)	0.00148	0.00015	1.88E-05(19)	1.880000e-05	1.910000e-06
31612	238	239-U	92	p	4612.40(5)	4612.40	0.0031(3)	0.00310	0.00030	3.9E-05(4)	3.950000e-05	3.820000e-06
31613	238	239-U	92	p	4660.62(5)	4660.62	0.0034(3)	0.00340	0.00030	4.3E-05(4)	4.330000e-05	3.820000e-06
31614	238	239-U	92	р	4672.59(5)	4672.59	0.00116(13)	0.00116	0.00013	1.48E-05(17)	1.480000e-05	1.660000e-06
31615	238	239-U	92	р	4806.38(5)	4806.38	7E-05(7)	0.00007	0.00007	9E-07(9)	8.910000e-07	8.910000e-07

Step 3: Bayesian Statistics

Step 4: Define Priors

- A prior tells the code that something will always lie within a certain range or at a specific number
- Potential automation— have code "learn" priors

```
Means #####
if N == 1:
    pass
else:
    for i in range(N-1):
        if means[i] > means[i+1]:
            return -np.inf
for i in range(N):
        if means[i] > E[-1] or means[i] < E[0]:
            return -np.inf</pre>
```


Step 5: Markov Chain Monte Carlo

- Primarily used for numerical approximations of multi-dimensional integrals
- Create arbitrary starting points for "walkers" a sufficient distance from each other
 - "walkers" spend most time in regions of higher probability
 - Produce a cluster of points where the posterior probability is largest
- These points are used to compute expected values efficiently

Step 5:

Initialization

- Slope
- Background bias
- Peak location (mean)
- Amplitudes
- Peak widths
- Background noise

Then setting 150 Walkers to each take 1000 steps

What value should I use for mean?1 (done to quit) 692 What value should I use for mean?2 (done to quit) done Number of Parameters:

⁶

Step 6:

Sanity Check/Distribution

- Darker the lines mean higher cluster of walkers.
- All other lines represent paths a walker takes.
- There should be a visible trend that the walkers are trying to merge to a singular point

Peak1-Vectorization

Step 7:

Error

- Y-axis, number of samples saying this is the right integral.
- X-axis, area under the curve.
- Then computing the error from our bounds we get great results.

Applications of Bayesian Approach

- Primarily used for numerical approximations of multidimensional integrals
 - Single, multi, overlapping peaks
 - Custom solutions possible
- Limitations and sources of error

error in P1 lower: 0.71501 error in P1 upper: 0.89300

error in P2 lower: 0.54862 error in P2 upper: 0.42021

Notes & Next Steps

- What can we do to help predict the shape of ugly peaks?
- Data Sampling: provide hundreds of previous spectra to help code "learn"
- Define priors in a generalized way

Conclusions

- Decrease in error
- Assists reading of spectra
- Flexible approach
- Beneficial to PGAA field

Thank you! Questions?

- Ryan Lester
 - ryanlester10@sbcglobal.net
- Cole Thompson
 - cole.thompson02@utexas.edu

