

Virtual Summer Meeting for Young Researchers

The Consortium for Enabling Technologies and Innovation

Applying advanced analysis and robotics tools to nuclear security challenges

Tenzing Joshi and Brian Quiter Applied Nuclear Physics Program Nuclear Sciences Division July 8, 2020

Tenzing Joshi – thjoshi@lbl.gov

Academic trajectory

B.S. Nuclear Engineering – 2008 Purdue University

Ph.D. Nuclear Engineering – 2014 University of California, Berkeley

Lawrence Scholar Lawrence Livermore National Laboratory

Postdoctoral Physicist – 2014 - 2017 Lawrence Berkeley National Laboratory

Staff Applied Physicist – 2017 - present Lawrence Berkeley National Laboratory

(The pre-Covid look)

Shifting interests

Fusion and fission reactor dynamics Mathematical modeling

NRF & mono-energetic gamma-ray sources

Neutrino and dark matter detection Exotic radiation detection concepts

Semiconductor detector fabrication Modern analysis methods, ML Data fusion and robotics tools, CV

Learning opportunities

LLNL AX-division summer intern

Public Policy and Nuclear Threats at UCSD

International Nuclear Safeguards Policy and Information Analysi at MIIS

Topics on Astroparticle and Underground Physics

□ Summer course and conference

Parenthood

Online courses, literature reviews, books, colleagues

Quantitative data fusion methods

Demonstration and validation of new concepts in nuclear security

BERKELEY LAB

Brian Quiter – bjquiter@lbl.gov

Academic trajectory

- B.S. Bio-nuclear Engineering 2003 University of California, Berkeley
- M.S. Nuclear Engineering 2005 University of California, Berkeley
- Environmental Engineering– 2005-2006 Blasland, Bouck & Lee Inc.
- Beer Industry 2007 Pyramid Breweries Inc.
- Ph.D. Nuclear Engineering 2010 University of California, Berkeley
- Project Scientist 2010-2014
- Staff Applied Physicist 2014 present Lawrence Berkeley National Laboratory
- Deputy Program Head 2019 present Applied Nuclear Physics Program, Lawrence Berkeley National Laboratory

NNSA Lab Internships

LLNL 2001-2003

Radiation detectors, quantifying thermal neutron backgrounds

LBNL 2003-2005

Cosmogenic activation of neutrinoless double beta decay detector material

INL 2007

Digital acquisition electronics and active interrogation techniques

LANL 2008-2009

MCNP code improvements for nuclear safeguards and Nuclear Resonance Fluorescence applications.

Interests/Accomplishments

NRF as NDA for safeguards

Added NRF phenomena to MCNPX/6

Radiation detection & contextual sensor fusion

Making applied physics data availability to researchers:

www.grdc.nersc.gov

www.bdc.lbl.gov

www.minos.lbl.gov

(The pre-Covid look)

Vehicle-scale detector Systems

- Collected and disseminated large, contextually-informed radiological datasets
 - <u>www.grdc.nersc.gov</u>
- Attribute background gamma-ray spectra to surroundings
 - Semantic segmentation
- Develop contextually-informed radiation detection algorithms and methods
- Commercial and R&D systems

MURS:10.1016/j.nima.2018.08.087

<u>10.1016/j.nima.2018.08.085</u>

Data competition for spectroscopic analysis

WRANNAL COMPLETE

A challenging, open dataset

- DOI: 10.13139/ornInccs/159741
- DOI: 10.1109/TNS.2020.3001754
- Training and Test sets, split into ~100sec runs.
- Test set: 43% public, 57% private.
- Variable background, 6 source classes

For each run in the test set, competitors must

- Detect whether there is an anomalous source.
- Identify the type of source.
- Locate when the detector is closest to it.

Competitions held via LBNL, then Top Coder

- Winning approaches submitted for cash prizes
- Currently evaluating winning algorithms

ETI Virtual Summer Meeting for Young Researchers

Non-negative Matrix Factorization for Spectral Analysis

NMF is a principled approach to gamma-ray spectral analysis

Machine Learning Methods for Radiation Detection

- Low-rank model (limited variation in the environment)
- Non-negative (additive nature of flux field)
- Poisson loss function (matches counting statistics)
- Non-convex, solved via alternating ML-EM

Anomaly detection and identification

Aerial background decomposition

Aerial NMF: <u>10.1109/TNS.2020.2978798</u> Correlation of Bkg w/ Imagery: <u>10.1109/NSS/MIC42101.2019.9059803</u> Anomaly Detection and Identification: <u>10.1109/TNS.2019.2907267</u>

BERKELEY LAB

3D Scene Data Fusion

Fuse radiological and contextual data to localize and map radiological material in 3D in real-time

Mapping fallout in contaminated Fukushima forest

SDF Concept:, doi:10.1016/j.nima.2015.08.016. doi.org/10.3390/s19112541

NG: arXiv:1908.06114 Aug 16, 2019

Concurrent neutron/γ sensitivity

Best fit activity: 1486 + 547 – 469 uCi

MiniPRISM: R. T. Pavlovsky, IEEE Nuclear Science Symposium, Manchester, UK, #R-11-01, 26 October - 2 November, 2019.

The Consortium for Enabling Technologies and Innovation

Acknowledgements

- Safeguards: This work was performed under the auspices of the U.S. Department of Energy by Lawrence Berkeley National Laboratory under Contract DE-AC02-05CH11231. The project was funded by the U.S. Department of Energy/National Nuclear Security Administration's (DOE/NNSA's) Office of Nonproliferation and Arms Control (NPAC).
- SDF/Quantification/NG/MiniPRISM: This material is based upon work supported by the Defense Threat Reduction Agency under HDTRA 10027- 21370, 10027- 28018, 10027- 30529, 10027- 23334, 10027- 28022, . This support does not constitute an express or implied endorsement on the part of the United States Government.
- **MUSE and Data Competitions:** This work was performed under the auspices of the US Department of Energy by Lawrence Berkeley National Laboratory under Contract DE-AC02-05CH11231. The project was funded by the US Department of Energy, National Nuclear Security Administration, Office of Defense Nuclear Nonproliferation Research and Development (DNN R&D). This research used resources of the National Energy Research Scientific Computing Center (NERSC), a U.S. Department of Energy Office of S
- BAD / NMF: This work was supported in part by the U.S. Department of Homeland Security, Domestic Nuclear Detection Office (DNDO), under Contract 2011-DN-077-ARI049-03 and Contract number HSQDC-13- X-B0003, in part by the U.S. Department of Energy, National Nuclear Security Administration, Office of Defense Nuclear Nonproliferation Research and Development (DNN R&D), and performed under the auspices of the U.S. Department of Energy by Lawrence Berkeley National Laboratory under Contract DE-AC02- 05CH11231. This support does not constitute an express or implied endorsement on the part of the Government.

8

Thank you!

Tenzing Joshi — thjoshi@lbl.gov Brian Quiter — bjquiter@lbl.gov

Applied Nuclear Physics Program @ LBNL Kai Vetter, Ren Cooper, Josh Cates, Paul Barton, Mark Bandstra , Ryan Pavlovsky, Nicolas Abgrall, Marco Salathe , Dan Hellfeld, Jayson Vavrek, Victor Negut, Chun Chow , Alex Moran and Joseph Curtis