1.(a) Let
$$\mathbf{x_1} = \begin{pmatrix} 1 \\ 2 \\ 1 \\ 1 \end{pmatrix}$$
, $\mathbf{x_2} = \begin{pmatrix} 2 \\ 1 \\ 3 \\ 1 \end{pmatrix}$ and $\mathbf{x_3} = \begin{pmatrix} 3 \\ 1 \\ 5 \\ 1 \end{pmatrix}$ and $S = \mathrm{Span}\{\mathbf{x_1}, \mathbf{x_2}, \mathbf{x_3}\}$. Find an orthonormal basis for S .

- (b) Find the expansion of $\mathbf{b} = \begin{pmatrix} 1 \\ 2 \\ 2 \\ 0 \end{pmatrix}$ in terms of this basis
- (c) Find the orthogonal projection onto S.

2.(a) Let
$$\mathbf{x_1} = \begin{pmatrix} 1 \\ 2 \\ 1 \\ 0 \end{pmatrix}$$
, $\mathbf{x_2} = \begin{pmatrix} 2 \\ 1 \\ 3 \\ 1 \end{pmatrix}$ and $\mathbf{x_3} = \begin{pmatrix} 3 \\ 2 \\ 0 \\ 1 \end{pmatrix}$ and $S = \mathrm{Span}\{\mathbf{v_1}, \mathbf{v_2}, \mathbf{v_3}\}$.

- (a) Find the orthogonal complement of S. It is a subspace of what space?
- (b) Let $A = [\mathbf{x_1}, \mathbf{x_1}, \mathbf{x_1}]$. Decompose A = QR where the columns of Q are an orthonormal basis for S, and R is an upper triangular matrix with positive diagonal entries.

3 Let
$$\mathbf{x_1} = \begin{pmatrix} 1 \\ 0 \\ 1 \\ 1 \end{pmatrix}$$
 and $\mathbf{x_1} = \begin{pmatrix} 2 \\ 1 \\ 1 \\ 0 \end{pmatrix}$. Find,

- (a) $|\mathbf{x}_1|$, $|\mathbf{x}_1|$.
- (b) The cos of the angle between x_1 and x_2 .
- (c) $|\mathbf{x_1} + \mathbf{x_2}|$.
- 4 Consider the line L in R^3 passing through the origin and the point (1,2,1). Let $\bar{x} = \begin{pmatrix} 2 \\ 1 \\ 1 \end{pmatrix}$.
 - (a) Find $\bar{x}_{||}$ the projection of \bar{x} on the line L.
 - (b) Find \bar{x}_{\perp} .
 - (c) Find the matrix representation of the orthogonal projection onto L.
- 5(a) If $S = \{\bar{u}_1, \dots \bar{u}_k\}$ is a set of nonzero orthogonal vectors show that this is a lineraly independent set.
- 5(b) If A is an $n \times m$ matrix show $(Null(A))^{\perp} = colA^{T}$