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Random Signals

Lecture 26
Autocorrelation Functions of
Random Binary Processes
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Autocorrelation of a Binary Process
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• A discrete (equi-probable at         ), stationary, zero-mean process.
• State change clocked at      interval with arbitrary starting time,     ; 

that is,       is considered a random variable uniformly distributed 
over (0,     ).

• X(t) in one interval is statistically independent from X(t) in another 
interval.

• The process is very common in data communications and digital 
computers.
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Autocorrelation of a Binary Process
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Autocorrelation of a Binary Process

When               are in the same interval, the product of     
is always        ; when they are not,                   are independent 
with zero mean and thus zero correlation. Hence,
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Remarks:
• When the two time instances are close to 

each other, the two corresponding r.v.s are 
likely to have the same value;

• When they are apart far enough, it is equally 
probable that they’ll have the same value as 
they’ll have the opposite value;

• At            , the autocorrelation is the same as 
the mean square value, representing the 
power of the signal.
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Example 6-2.2

A

A−

b

0t att +0

att 20 +att −0

)(tX The process is the same 
as the binary process 
previously discussed 
except that it now does not 
have a full duty cycle but 
only             .atb /
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The range that the center of the time-bar (     wide) can be in for 
it to be totally in the shaded area is 
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Other Examples of Autocorrelation Functions

1. Binary process with uniformly spaced switching 
intervals – see previous discussion.

2. Binary process with uniformly spaced switching 
intervals and non-zero mean.

3. Binary process with randomly spaced switching 
times – the telegraph process.

4. Bandpass filtered signals – discussion will take 
place with introduction of power spectrum.
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Binary Process with Non-zero Mean
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Arrival Interval of A Poisson Process

• Probability of arrival interval, τ, as a random variable is the same 
as the probability that there is no arrival during that interval.
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Binary Process with Random Switching 
Times
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• The switching times              occur as Poisson arrivals – a point 
process.

• When      is less than the switching interval, the correlation 
between                           has a value        .
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