

Autocorrelation of a Binary Process

 $X(t_1)$ and $X(t_2)$ are independent if $|t_1 - t_2| = |\tau| > t_a$.

Therefore, due to the fact that the process is stationary, zero-mean,

$$R_{X}(\tau) = E[X(t)X(t+\tau)] = E[X(t)]E[X(t+\tau)] = 0, \quad |\tau| > t_{a}$$

When $|\tau| < t_a$, t_1 and $t_2 = t_1 + \tau$ may or may not be in the same interval, depending on the value of t_0 .

$\begin{aligned} &\Pr\{t_{1} \text{ and } t_{1} + \tau, \tau > 0, \text{ are in the same interval } \} \\ &= \Pr\{t_{1} + \tau - t_{a} < t_{0} \leq t_{1}\} = \frac{1}{t_{a}}[t_{1} - (t_{1} + \tau - t_{a})] = \frac{t_{a} - \tau}{t_{a}} \\ &\Pr\{t_{1} \text{ and } t_{1} + \tau, \tau < 0, \text{ are in the same interval } \} \\ &= \Pr\{t_{1} - t_{a} < t_{0} \leq t_{1} + \tau\} = \frac{1}{t_{a}}[t_{1} + \tau - (t_{1} - t_{a})] = \frac{t_{a} + \tau}{t_{a}} \\ &\Pr\{t_{1} \text{ and } t_{1} + \tau \text{ are in the same interval}\} \\ &= \Pr\{t_{1} \text{ and } t_{1} + \tau \text{ are in the same interval}\} = \frac{t_{a} - |\tau|}{t_{a}} \end{aligned}$

Autocorrelation of a Binary Process

When t_1 and t_2 are in the same interval, the product of X_1 and X_2 is always A^2 ; when they are not, X_1 and X_2 are independent with zero mean and thus zero correlation. Hence,

$$R_X(\tau) = \begin{cases} A^2 \left[\frac{t_a - |\tau|}{t_a} \right] = A^2 \left[1 - \frac{|\tau|}{t_a} \right], & |\tau| \le t_a \\ 0, & |\tau| > t_a \end{cases}$$

Remarks:

- When the two time instances are close to each other, the two corresponding r.v.s are likely to have the same value;
- When they are apart far enough, it is equally probable that they'll have the same value as they'll have the opposite value;
- At $\tau = 0$, the autocorrelation is the same as the mean square value, representing the power of the signal.


```
Fall 2003
```


Binary Process with Non-zero Mean

Arrival Interval of A Poisson Process

• Probability of arrival interval, *r*, as a random variable is the same as the probability that there is no arrival during that interval.

Copyright 2003

