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Power Density Spectrum - Applications

» Consider a Binary Random Process; use previously derived
autocorrelation function
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Alternative View - Spectral Density of Pulses

Consider the following elementary pulses that are often used:
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A process formed with these elementary pulses can be defined:
X(t)= Y G()Ap(t~it,)

where G(i)is i.i.d. with Pr{G(i) = -1} = Pr{G(i) = 1} = 0.5, p is either
p, or p.,and 4is a constant that defines the pulse amplitude.
X (¢)is thus sum of many independent, zero-mean processes
because E{G(i)} =0 . Using previous results, we have

Ry (t,t+7)= AZZR (t—it,t—it,+7), |7|<t,/2, where I =T /1,

Spectral Density of Pulses
Or more formally, X, (¢) = ZG(l)Ap(t—zt)
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and R (¢t + 7) is the autocorrelation of the elementary pulse. x T t
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Spectral Density of Binary Processes
e For p(t)=p,(t)=rect(t/t,),

F,(w) =tsinc(t,@/2x) and thus | F,(w)[=tsinc’(t,w/2r)

Therefore, A |F(o0)f

S (w)= = A’tsinc’(t,w/27)
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Note that in both

Example

The spectral density of the pulses thus defines the bandwidth
of the binary signal carried by these pulses. This bandwidth is a
function of the pulse width ¢, .

We often need to “match” the bandwidth of the signal to the

bandwidth of the transmission channel so as to reduce undesirable
distortion of interference.

For example, we may request a bandwidth which would support
transmission of the signal up to the frequency at which the
spectral density is no more than 1% of its maximum. What
would this bandwidth be? S.(f) o
—=-2<0.01 for |f | f,

For the rectangular pulse, Sy (0)
S, (0) = A%, S, (f}) = A’tsinc* (¢, f;) = 0.014°t, = sinc’ (¢, f;) = 0.01

i i tfimr=8.4226 = =2.681/t
n | ) cases, max S, (o) ForSthg)ralj?d/Zosme pulse, i A 1
WAt s s
Sy(f) == "sinc (tlf)[il_(lf)z} occurs at w=0 o LT Lfir=51836 = f =1.65/1
] SX<./{)=f‘sincz(t.,/;){ 2} =0.0150
4 1-(t./) 4
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Bandwidth of Various Pulses Example

%som for | f|> f; = 10log,,(0.01)=-20(dB) at f;

Rectangular pulse Raised-cosine pulse

¥ 10log,, Sy (#,f)—10log,, S+ (0) 01010&0 Sy(t,/)—10log,, S, (0)
— = _ — A _

An nth- order Butterworth spectrum is one whose spectral density
is given b 1
given by S D=1
in which W is the so-called half-power bandwidth.
1. Find the bandwidth outside of which the spectral density is
less than 1% of its maximum value.
2. For n=1, find the bandwidth (F) outside of which no more
than 1% of the average power exists.
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Cross-Spectral Density

« Just as we are interested in cross-correlation analysis
(e.g., to investigate the joint statistical behavior of the
input and the output of a system), we are interested in
cross-spectral density, which is the frequency domain

representation of the cross-correlation function.
E[F, (-0)F, (0)] E[Fy (-0)F, (0)]
2T

2T

Sy ()= ;lin and Sy (w)= ;1230

o
X, and Y, are truncated processes as defined previously

Key properties:

1. Sy(w)=S,(w) (* denotes complex conjugate)
2. Re{S, ()} is an even function of @. Also true for Sy, () .
3. Im{S, (@)} is an odd function of @ . Also true for S,,(®) .

Cross-spectral Density and Cross-
correlation

+ Similar to the relationship between autocorrelation
function and power spectral density,

SXY(a)) = J.j; RXY(‘[)e*/'wTdT SYX (C()) — '[_0; RYX(T)efjmrdT

R, (1)= i'{: SXy(a,)e./mda) Ry (7)= iJ‘: Syx (a))ejmrdw

Example:
For two jointly stationary random processes, the crosscorrelation
function is 2¢%, >0
Ry ()=
0, 7<0

The corresponding cross-spectral density is
2exp[-(jo+2)r]* 2
—(jo+2) |0 jo+2

S(@)=[ Ry (e dz=[ 2" dr =

S)'x(w):S;(y(w) =- [

Fall 2003 ECE 3075A B.H.Juang Copyright 2003 Lecture #32, Slide #9

Fall 2003 ECE 3075A B.H.Juang ~ Copyright 2003 Lecture #32, Slide #10




