ECE 3075A Random Signals

Lecture 32

Correlation Functions & Power Density Spectrum, Cross-spectral Density

School of Electrical and Computer Engineering Georgia Institute of Technology Fall. 2003

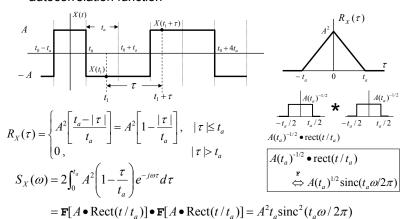
Fall 2003

ECE 3075A B. H. Juang Copyright 2003

Lecture #32, Slide #1

Power Density Spectrum - Applications

Consider a Binary Random Process; use previously derived autocorrelation function



Fall 2003

Fall 2003

ECE 3075A B. H. Juang Copyright 2003

Lecture #32. Slide #2

Alternative View - Spectral Density of Pulses

Consider the following elementary pulses that are often used:

$$p_r(t) = \operatorname{rect}(t/t_1)$$
 and

$$p_c(t) = \frac{1}{2} \left(1 + \cos \frac{2\pi t}{t_1} \right), \quad |t| \le \frac{t_1}{2}; = 0, \quad |t| > \frac{t_1}{2}.$$

A process formed with these elementary pulses can be defined:

$$X(t) = \sum_{i=-\infty}^{\infty} G(i) Ap(t - it_1)$$

where G(i) is i.i.d. with $Pr\{G(i) = -1\} = Pr\{G(i) = 1\} = 0.5$, p is either p_r or p_c , and A is a constant that defines the pulse amplitude.

X(t) is thus sum of many independent, zero-mean processes because $E\{G(i)\}=0$. Using previous results, we have

$$R_{X_{\tau}}(t,t+\tau) = A^2 \sum_{i=-1}^{I} R_P(t-it_1,t-it_1+\tau), \ |\tau| \le t_1/2, \text{ where } I = T/t_1,$$

and $R_p(t, t+\tau)$ is the autocorrelation of the elementary pulse.

Spectral Density of Pulses

Or more formally,
$$X_{T}(t) = \sum_{i=-I}^{I} G(i) A p(t-it_{1})$$

$$E[X_{T}(t)X_{T}(t')] = E\left[\sum_{i=-I}^{I} G(i) A p(t-it_{1}) \sum_{j=-I}^{I} G(j) A p(t'-jt_{1})\right]$$

$$= \sum_{i=-I}^{I} \sum_{j=-I}^{I} E[G(i)G(j)] A p(t-it_{1}) A p(t'-jt_{1})$$

$$= \sum_{i=-I}^{I} \sum_{j=-I}^{I} \delta(i-j) A p(t-it_{1}) A p(t'-jt_{1}) = \sum_{i=-I}^{I} A^{2} p(t-it_{1}) p(t'-it_{1})$$

$$E[|F_{X_{T}}(\omega)|^{2}] = E\left\{\left[\int_{-\infty}^{\infty} X_{T}(t) e^{-j\omega t} dt\right] \int_{-\infty}^{\infty} X_{T}(t') e^{j\omega t'} dt'\right\}$$

$$= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} E[X_{T}(t)X_{T}(t')] e^{-j\omega t} dt dt' = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \sum_{i=-I}^{I} A^{2} p(t-it_{1}) p(t'-it_{1}) e^{-j\omega t'} dt dt'$$

$$= \sum_{i=-I}^{I} A^{2} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} p(t) p(t') e^{-j\omega(t+it_{1})} e^{j\omega(t'+it_{1})} dt dt' = \sum_{i=-I}^{I} A^{2} |F_{P}(\omega)|^{2} = 2IA^{2} |F_{P}(\omega)|^{2}$$

$$= \frac{2T}{t_{1}} A^{2} |F_{P}(\omega)|^{2} \implies S_{X}(\omega) = \lim_{T \to \infty} \frac{E[|F_{X_{T}}(\omega)|^{2}]}{2T} = \frac{A^{2} |F_{P}(\omega)|^{2}}{t_{1}}$$

Spectral Density of Binary Processes

• For $p(t) = p_{1}(t) = rect(t/t_{1})$,

 $F_p(\omega) = t_1 \operatorname{sinc}(t_1\omega/2\pi)$ and thus $|F_p(\omega)|^2 = t_1^2 \operatorname{sinc}^2(t_1\omega/2\pi)$

Therefore,
$$S_X(\omega) = \frac{A^2 |F_P(\omega)|^2}{t_1} = A^2 t_1 \operatorname{sinc}^2(t_1 \omega / 2\pi)$$

• For $p(t) = p_c(t) = \frac{1}{2} \left(1 + \cos \frac{2\pi t}{t} \right), |t| \le \frac{t_1}{2}; = 0, |t| > \frac{t_1}{2},$

$$F_{P}(\omega) = \frac{1}{2} \int_{-t_{1}/2}^{t_{1}/2} \left(1 + \cos \frac{2\pi t}{t_{1}} \right) e^{-j\omega t} dt = \frac{t_{1}}{2} \left[\frac{\sin(\omega t_{1}/2)}{(\omega t_{1}/2)} \right] \left[\frac{\pi^{2}}{\pi^{2} - (\omega t_{1}/2)^{2}} \right]$$

$$S_X(\omega) = \frac{A^2 t_1}{4} \left[\frac{\sin(\omega t_1/2)}{(\omega t_1/2)} \right]^2 \left[\frac{\pi^2}{\pi^2 - (\omega t_1/2)^2} \right]^2$$

$$S_X(f) = \frac{A^2 t_1}{4} \operatorname{sinc}^2(t_1 f) \left[\frac{1}{1 - (t_1 f)^2} \right]^2$$

Note that in both cases, max $S_{\nu}(\omega)$ occurs at $\omega = 0$

Fall 2003

ECE 3075A B. H. Juang Copyright 2003

Lecture #32. Slide #5

Lecture #32, Slide #7

Example

The spectral density of the pulses thus defines the bandwidth of the binary signal carried by these pulses. This bandwidth is a function of the pulse width t_1 .

We often need to "match" the bandwidth of the signal to the bandwidth of the transmission channel so as to reduce undesirable distortion of interference.

For example, we may request a bandwidth which would support transmission of the signal up to the frequency at which the spectral density is no more than 1% of its maximum. What would this bandwidth be?

$$\frac{S_X(f)}{S_X(0)} \le 0.01 \quad \text{for } |f| > f_1$$

For the rectangular pulse,

$$S_X(0) = A^2 t_1$$
 $S_X(f_1) = A^2 t_1 \operatorname{sinc}^2(t_1 f_1) = 0.01 A^2 t_1 \Rightarrow \operatorname{sinc}^2(t_1 f_1) = 0.01$

For the raised cosine pulse, $t_1 f_1 \pi = 8.4226 \implies f_1 = 2.681/t_1$

$$S_{x}(0) = \frac{A^{2}t_{1}}{4} / 4$$

$$S_{x}(f_{1}) = \frac{A^{2}t_{1}}{4} \operatorname{sinc}^{2}(t_{1},f_{1}) \left[\frac{1}{1 - (t_{1}f_{1})^{2}} \right]^{2} = 0.01 \frac{A^{2}t_{1}}{4} \qquad t_{1}f_{1}\pi = 5.1836 \quad \Rightarrow \quad f_{1} = 1.65 / t_{1}$$

Fall 2003

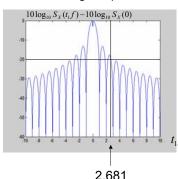
ECE 3075A B. H. Juang Copyright 2003

Lecture #32. Slide #6

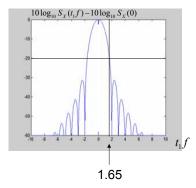
Bandwidth of Various Pulses

$$\frac{S_X(f)}{S_X(0)} \le 0.01$$
 for $|f| > f_1 \implies 10 \log_{10}(0.01) = -20$ (dB) at f_1

Rectangular pulse



Raised-cosine pulse



Example

An nth- order Butterworth spectrum is one whose spectral density is given by $S_X(f) = \frac{1}{1 + (f/W)^{2n}}$

in which *W* is the so-called half-power bandwidth.

- 1. Find the bandwidth outside of which the spectral density is less than 1% of its maximum value.
- 2. For n=1, find the bandwidth (F) outside of which no more than 1% of the average power exists.

$$\max S_X = S_X(0) = \frac{1}{1 + (0/W)^{2n}} = 1$$

$$S_X(f) \text{ is a monotonically decreasing function of } f.$$

$$S_X(f) = \frac{1}{1 + (f/W)^{2n}} = 0.01 \implies 100 = 1 + (f/W)^{2n} \implies f = W(99)^{1/(2n)}$$

$$\int_{-\infty}^{\infty} S_X(f) df = \int_{-\infty}^{\infty} \frac{1}{1 + (f/W)^2} df = W \tan^{-1} \left(\frac{f}{W}\right) \Big|_{-\infty}^{\infty} = W\pi$$

$$\int_{-\infty}^{\infty} S_X(f) df = \int_{-\infty}^{\infty} \frac{1}{1 + (f/W)^2} df = W \tan^{-1} \left(\frac{f}{W}\right) \Big|_{-\infty}^{\infty} = W\pi$$

$$\int_{-\infty}^{\infty} S_X(f) df = \int_{-\infty}^{\infty} \frac{1}{1 + (f/W)^2} df = W \tan^{-1} \left(\frac{f}{W}\right) \Big|_{-\infty}^{\infty} = W\pi$$

$$\int_{-F}^{F} \frac{1}{1 + (f/W)^2} df = W \tan^{-1} \left(\frac{f}{W}\right) \Big|_{-F}^{F} = W 2 \tan^{-1} \left(\frac{F}{W}\right) = 0.99W\pi \qquad F = 63.657W$$

ECE 3075A B. H. Juang Copyright 2003 Fall 2003

Cross-Spectral Density

 Just as we are interested in cross-correlation analysis (e.g., to investigate the joint statistical behavior of the input and the output of a system), we are interested in cross-spectral density, which is the frequency domain representation of the cross-correlation function.

$$S_{XY}(\omega) = \lim_{T \to \infty} \frac{E[F_{X_T}(-\omega)F_{Y_T}(\omega)]}{2T} \text{ and } S_{YX}(\omega) = \lim_{T \to \infty} \frac{E[F_{Y_T}(-\omega)F_{X_T}(\omega)]}{2T}$$

 X_T and Y_T are truncated processes as defined previously

Key properties:

- 1. $S_{XY}(\omega) = S_{YX}^*(\omega)$ (* denotes complex conjugate)
- 2. Re $\{S_{XY}(\omega)\}$ is an even function of ω . Also true for $S_{YX}(\omega)$.
- 3. $\operatorname{Im} \{S_{YX}(\omega)\}\$ is an odd function of ω . Also true for $S_{YX}(\omega)$.

Fall 2003 ECE 3075A B. H. Juang Copyright 2003

Lecture #32. Slide #9

Cross-spectral Density and Crosscorrelation

 Similar to the relationship between autocorrelation function and power spectral density,

$$S_{XY}(\omega) = \int_{-\infty}^{\infty} R_{XY}(\tau)e^{-j\omega\tau}d\tau$$

$$S_{YX}(\omega) = \int_{-\infty}^{\infty} R_{YX}(\tau)e^{-j\omega\tau}d\tau$$

$$R_{XY}(\tau) = \frac{1}{2\pi} \int_{-\infty}^{\infty} S_{XY}(\omega)e^{j\omega\tau}d\omega$$

$$R_{YX}(\tau) = \frac{1}{2\pi} \int_{-\infty}^{\infty} S_{YX}(\omega)e^{j\omega\tau}d\omega$$

Example:

For two jointly stationary random processes, the crosscorrelation function is $R_{\rm XY}(\tau) = \begin{cases} 2e^{-2\tau}, & \tau>0\\ 0, & \tau<0 \end{cases}$

The corresponding cross-spectral density is

$$S_{XY}(\omega) = \int_{-\infty}^{\infty} R_{XY}(\tau) e^{-j\omega\tau} d\tau = \int_{0}^{\infty} 2e^{-(j\omega+2)\tau} d\tau = \frac{2\exp[-(j\omega+2)\tau]}{-(j\omega+2)} \Big|_{0}^{\infty} = \frac{2}{j\omega+2}$$
$$S_{YX}(\omega) = S_{XY}^{*}(\omega) = \frac{2}{-j\omega+2}$$

Fall 2003 ECE 3075A B. H. Juang Copyright 2003 Lecture #32, Slide #10