4.42. (a) The Nyquist criterion states that z.{f) can be recovered as long as

27 1
= T & —
T2 X 2m(200) =T < 500
In this case, T' = 1/500, s0 the Nyquist criterion is satisfied, and =, (£) can be recovered.

(b) Yes. A delay in time does not change the bandwidth of the signal. Hence, y,(t) has the same
bandwidth and same Nyquist sampling rate as z.(2}.

(¢) Consider first the following expressions for X (e™*) and Y {ei¥}):
() = 7X(i oy = 5og X+ (7500w)
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Then, in the following figure,
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0, otherwise
Y(e) = e/ X(eM)
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(d) Yes, from our analysis above, Hy(e) = =02



4.44. (a) See the following figure:
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¢i@) for mf3 < |w} € v Hence let wp = 7/3.

(b) For this to be true, H{ei*) needs to filter out X(
Furthermore, we want
ﬂ = 27(1000) = T3 = 1/6000
(¢} Matching the following figure of S(e-f“} with the figure for R{j), and remembering that & = /T,
weget Ty = (2x/3}/(2000x) = 1/3000.
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4.46. (a) Notice that go[n] = z{3n]
tnfn] = z[3n+1)
wln] = z3n+2],
and therefore,
yo[n /3, n =3k

zln] =< wlirn-1)/3, n=3k+1
y2l(n —2)/3], n=3k+2

{b) Yes. Since the bandwidth of the filters are 25 /3, there is no aliasing introduced by downsampling
Hence to reconstruct z[n], we need the system shown in the following figure: .
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{c) Yes, zn] can be reconstructed from ys[r| and y4]n] as demonstrated by the following figure:
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In the following discussion, let z.[n] denote the even samples of z[n}, and Ton} denote the odd
samples of z[n|: C

el = {5 ToE
. _ G, n even
on = z{n], nodd

In the figure, yaln] = z(2n], and hence,

van] = {zEn], n even

0, n add

= Z[n]

Furthermore, it can be verified using the IDFT that the impulse response hy[n)] corresponding to
Hq,[e'w} is
_ | —2/(jwn), nodd
haln] = { 0, otherwise
Notice in particular that every other sample of the impulse response ha[n] is zero. Also, from the
form of Hy(e?™), it is clear that He{e™)Hy(e?) = 1, and hence hy[n] * hyln] = din].
Therefore,

wil = {40 Do
wy[n), n even
D, n add
_ [ (z*hdln], neven
- 0, n odd

Zo[n] ¥ haln)

where the last equality follows from the fact that hy[n] is non-zero only in the odd samples.
Now, 8] = v4[n]# ha[n] = z[n] * ha[n]* hsln] = Zaln], and since zfn) = ze[n]+ zoln), sln] +vsln] =
z{r].



4.53. Sketches appear below,
{a} First, X (¢/“} is plotted.
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The lowpass filter cuts off at .
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The downsampler expands the frequency axis. Since Ro{e’) is bandlimited to 7, no aliasing
occurs.
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The upsampler compresses the frequency axis by a factor of 2.
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The lowpass filter cuts off at § = Y;(e?) = Ro(e™) as sketched above,
(b) Gu(ej”) = % {X{ej"’)Hu[ej“’) + X(ej[”*']}ffo(eﬂ“*ﬂ))

(c) Yale) = %Ho(ej“) (X(efw)ffﬂ(ei”) + X(e.‘f(w+t))HO{ej(w+ﬂ)})
Yl(e"") = %H; (ef‘-’) (X(ejw)ﬂ-l [e'f"'] + X(cjiw—:r})Hl [ej(w+:r)))
Y() = Yale)-Yi(e™) :
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The aliasing terms always cancel. Y (e*} is proportional to X (e#) if [H§ (e/) — H}(e/*)] is a
constant.
X(e™} = 0,7/3 € || £ 7. 2[n] can be thought of as an oversampled signal. The approach is to
determine whether ny is odd or even, then sample so that ng is avoided, upsampled and lowpass filter.
This recovers z{ng).



