Modeling and Numerical Simulations of Turbulent Multi-Species High-Pressure Flows

Speaker: Josette Bellan, NASA JPL/CalTech

Time: Nov. 6th, 2021
10 am EDT; 16:00 Paris; 22:00 Beijing.

Zoom Meeting ID: 959 5515 8623
Passcode: combustion
Check https://sun.ae.gatech.edu/combustion-webinar
for details or directly contact wenting.sun@aerospace.gatech.edu
**Biography:** Josette Bellan received her PhD from Princeton University and shortly thereafter began doing research at the Jet Propulsion Laboratory (JPL)/Caltech where she has remained her entire career. She has developed accurate numerical simulations of both high-pressure and multi-phase turbulent reactive flows, and has derived reduced chemical kinetic mechanisms of complex fuels. Josette is an AIAA Fellow, an ASME Fellow, a Combustion Institute Fellow and an Amelia Earhart Fellow. She is the recipient of the AIAA Pendray Literature Award and of the JPL Magellan Award. Josette has been twice sponsored by NATO’s Research and Technology Agency to lecture at several institutions in Europe. She served for six years as Associate Editor for the AIAA Journal, was for twenty years on the Editorial Board of Atomization and Sprays, and was Deputy Editor of Progress in Energy and Combustion Science for nine years. She has published papers in twenty-two different journals.

**Abstract:** High-pressure turbulent reactive flows occur in numerous combustion devices. These flows have been experimentally shown to display features unlike those of atmospheric-pressure flows, namely high density-gradient magnitude regions. To reproduce these features, the mathematical models necessary to describe these flows are succinctly reviewed and explained with emphasis on the new aspects compared to atmospheric-pressure flows. Results are presented from Direct Numerical Simulations of turbulent mixing of several chemical species and from Direct Numerical Simulations of turbulent combustion using a simplified reaction model. These results show the existence of the high density-gradient magnitude regions and, additionally, identify uphill – diffusion, which had not been described in this context prior to these studies, although it is well-known in chemical engineering extraction industry. Unlike regular diffusion, uphill diffusion occurs against the gradient and concentrates the species for which it occurs, a fact which impacts turbulent flow aspects. The importance of using the complete diffusion matrix is addressed and emphasized. Further aspects of these turbulent high-pressure studies are briefly discussed.
Combustion Webinar Organization Committees

Advisory Committee
Yiguang Ju (Princeton University)
Fei Qi (Shanghai Jiao Tong University)
Philippe Dagaut (CNRS-INSIS)
Gautam Kalghatgi (Univ of Oxford/Saudi Aramco)
Med Colket (RTRC, Retired)

Chung K. (Ed) Law (Princeton University)
Katharina Kohse-Höinghaus (University of Bielefeld)
Kaoru Maruta (Tohoku University)
Kelly Senecal (Convergent Science)
Toshiro Fujimori (IHI Inc.)

Technical Committee
Wenting Sun (Georgia Tech) Co-Chair
Lorenz R Boeck (FM global)
Liming Cai (Tongji University)
Zheng Chen (Peking University)
Matthew Cleary (The University of Sydney)
Stephen Dooley (Trinity College Dublin)
Tiegang Fang (North Carolina State University)
Aamir Farooq (KAUST)
Michael Gollner (UC Berkeley)
Wang Han (The University of Edinburgh)
Jean-Pierre Hickey (U. Waterloo)
Xinyan Huang (Hong Kong Polytech Univ.)
Tai Jin (Zhejiang University)
Tina Kasper (University Duisburg-Essen)

Isaac Boxx (DLR) Co-Chair
Deanna Lacoste (KAUST)
Davide Laera (CERFACS)
Joseph Lefkowitz (Technion)
Qili Liu (Purdue University)
Yushuai Liu (IET, CAS)
Zhandong Wang (USTC)
Nicolas Noiray (ETH Zurich)
Guillermo Rein (Imperial College London)
Xingjian Wang (Tsinghua University)
Jun Xia (Brunel University London)
Huahua Xiao (USTC)
Dong Yang (SUSTech)
Suo Yang (University of Minnesota)
Peng Zhao (University of Tennessee, Knoxville)
Disclaimer

- The presentation materials and comments made by the lecturer and participants are only for research and education purposes.
- All presentation materials are the sole properties of the lecturer and the Combustion Webinar organizer, and cannot be published and disseminated without written approvals from both parties.
- This lecture may be recorded and released to public.

- Please use Chat or Raise Hand to ask your questions.
- Please turn off microphone. Webinar will be locked after 30 minutes.
- Recorded lectures are on Combustion Webinar YouTube Channel
  https://www.youtube.com/channel/UCSsO7e9VIn__RejSiAPF0JA