Data-Based Modeling in Turbulent Combustion: From Traditional Paradigms to Applications in Data Science

Speaker: Tarek Echekki, North Carolina State University

Time: Nov. 13th 2021
10 am EST; 16:00 Paris; 23:00 Beijing.

Zoom Meeting ID: 959 5515 8623
Passcode: combustion
Check https://sun.ae.gatech.edu/combustion-webinar
for details or directly contact wenting.sun@aerospace.gatech.edu
Biography: Dr. Tarek Echekki is a Professor at the Department of Mechanical and Aerospace Engineering at North Carolina State University (NC State) since 2002. He received his PhD in Mechanical Engineering from Stanford University in 1993. Subsequently he held different research positions at the French Petroleum Institute (92-94), Sandia National Laboratories (94-96, 98-01) and the University of California at Berkeley (97-98). Prof. Echekki's research interests are in combustion theory and turbulent combustion modeling. His most recent work has focused on the development of multiscale and data-based modeling frameworks to overcome challenges in turbulent combustion closure and to accelerate the simulation of turbulent reacting flows. Prof. Echekki is a Fellow of the American Society of Mechanical Engineers and an Associate Fellow of the American Institute of Aeronautics and Astronautics. He is the co-editor, with Prof. Epaminondas Mastorakos (University of Cambridge), of “Turbulent Combustion Modeling – Advances, New Trends and Perspectives” (Springer, 2011). He also serves as Associate Editor for ASME Journal of Heat Transfer.

Abstract: Data has played a central role in combustion modeling. Data from time or space-resolved multi-scalar measurements has helped accelerate the development and validation of turbulent combustion models. A number of state-of-the-art models, such as the flamelet approach, rely on data tabulated from canonical low-dimensional reactor simulations as an integral part of their closure. With the increasing availability of simulation and experimental data, additional opportunities have arisen. These opportunities are related to the construction of turbulent combustions starting from simulation, experiments or multi-source and heterogeneous data. Ideas and proposals for research opportunities to develop data-based modeling frameworks are presented. Machine learning provides important and alternative set of tools to enable a robust implementation of such frameworks. As an illustration, a novel framework for developing closure models in turbulent combustion using experimental multi-scalar measurements is discussed. The framework is based on the construction of conditional means and joint scalar PDFs from experimental data based on a low-dimensional manifold derived from the data using principal component analysis (PCA). The resulting principal components (PCs) act as both conditioning and transported variables. Strategies for the construction of statistics, the recovery of missing species and the development of closure models for PCs chemical source terms are discussed and future extensions are identified. Results of the framework’s a posteriori validation on two laboratory-scale flames, the Sandia and the Sydney flames, are presented.
Combustion Webinar Organization Committees

Advisory Committee

Yiguang Ju (Princeton University)
Fei Qi (Shanghai Jiao Tong University)
Philippe Dagaut (CNRS-INSIS)
Gautam Kalghatgi (Univ of Oxford/Saudi Aramco)
Med Colket (RTRC, Retired)

Chung K. (Ed) Law (Princeton University)
Katharina Kohse-Höinghaus (University of Bielefeld)
Kaoru Maruta (Tohoku University)
Kelly Senecal (Convergent Science)
Toshiro Fujimori (IHI Inc.)

Technical Committee

Wenting Sun (Georgia Tech) Co-Chair
Lorenz R Boeck (FM global)
Liming Cai (Tongji University)
Zheng Chen (Peking University)
Matthew Cleary (The University of Sydney)
Stephen Dooley (Trinity College Dublin)
Tiegang Fang (North Carolina State University)
Aamir Farooq (KAUST)
Michael Gollner (UC Berkeley)
Wang Han (The University of Edinburgh)
Jean-Pierre Hickey (U. Waterloo)
Xinyan Huang (Hong Kong Polytech Univ.)
Tai Jin (Zhejiang University)
Tina Kasper (University Duisburg-Essen)

Isaac Boxx (DLR) Co-Chair
Deanna Lacoste (KAUST)
Davide Laera (CERFACS)
Joseph Lefkowitz (Technion)
Qili Liu (Purdue University)
Yushuai Liu (IET, CAS)
Zhengdong Wang (USTC)
Nicolas Noiray (ETH Zurich)
Guillermo Rein (Imperial College London)
Xingjian Wang (Florida Institute of Technology)
Jun Xia (Brunel University London)
Huahua Xiao (USTC)
Dong Yang (SUSTech)
Suo Yang (University of Minnesota)
Peng Zhao (University of Tennessee, Knoxville)
Disclaimer

• The presentation materials and comments made by the lecturer and participants are only for research and education purposes.
• All presentation materials are the sole properties of the lecturer and the Combustion Webinar organizer, and cannot be published and disseminated without written approvals from both parties.
• This lecture may be recorded and released to public.

• Please use Chat or Raise Hand to ask your questions.
• Please turnoff microphone. Webinar will be locked after 30 minutes.
• Recorded lectures are on Combustion Webinar YouTube Channel
 https://www.youtube.com/channel/UCSsO7e9VlIn__RejSiAPF0JA