COMBUSTION WEBINAR

High Fidelity Simulations of Hydrogen and Ammonia Turbulent Premixed Flames: Physical Characteristics and Modeling Implications

Speaker: Prof. Hong G. Im, CCRC, KAUST

Time: March. 12th 2022
10:00 EST; 16:00 CET; 23:00 Beijing.

Zoom Meeting ID: 959 5515 8623
Passcode: combustion
Check https://sun.ae.gatech.edu/combustion-webinar for details or directly contact wenting.sun@aerospace.gatech.edu.
Abstract: Hydrogen and ammonia have attracted enormous research interests in recent years due to their relevance to viable e-fuels towards carbon-neutral power and transportation. Despite the simplicity in oxidation pathways, combustion of these fuels involves pronounced effects of fast-diffusing major and intermediate species, leading to interesting flame dynamics in turbulent and high pressure conditions. This presentation will provide an overview of recent studies at KAUST using direct numerical simulations to reveal local structures and statistical characteristics of turbulent premixed flames at a wide range of relevant physical parameters. The use of simulation data to provide insights into turbulent combustion modeling implication will also be presented. Recent developments in accelerated simulations using GPU and machine learning will also be briefly discussed.

Biography: Hong G. Im received his B.S. and M.S. in from Seoul National University, and Ph.D. from Princeton University. After postdoctoral researcher appointments at the Center for Turbulence Research, Stanford University, and at the Combustion Research Facility, Sandia National Laboratories, he held assistant/associate/full professor positions at the University of Michigan. He joined KAUST in 2013 as a Professor of Mechanical Engineering. He is a recipient of the NSF CAREER Award and SAE Ralph R. Teetor Educational Award, and has been inducted as an International Member of the National Academy of Engineering of Korea, a Fellow of the Combustion Institute and American Society of Mechanical Engineers (ASME) and an Associate Fellow of American Institute of Aeronautics and Astronautics (AIAA). He has also served as an Associate Editor for the Proceedings of the Combustion Institute, and currently on the Editorial Board for Energy and AI. Professor Im’s research and teaching interests are primarily fundamental and practical aspects of combustion and power generation devices using high-fidelity computational modeling. Current research activities include direct numerical simulation of turbulent combustion at extreme conditions, large eddy simulations of turbulent flames at high pressure, combustion of hydrogen and e-fuels, spray and combustion modeling in advanced internal combustion engines, advanced models for pollutant formation, and plasma-assisted combustion.
Combustion Webinar Organizing Committees

Advisory Committee
Yiguang Ju (Princeton University)
Fei Qi (Shanghai Jiao Tong University)
Philippe Dagaut (CNRS-INSIS)
Gautam Kalghatgi (Univ. of Oxford/Saudi Aramco)
Med Colket (RTRC, Retired)

Chung K. (Ed) Law (Princeton University)
Katharina Kohse-Höinghaus (University of Bielefeld)
Kaoru Maruta (Tohoku University)
Kelly Senecal (Convergent Science)
Toshiro Fujimori (IHI Inc.)

Technical Committee
Wenting Sun (Georgia Tech) Co-Chair
Lorenz R Boeck (FM global)
Liming Cai (Tongji University)
Zheng Chen (Peking University)
Matthew Cleary (The University of Sydney)
Stephen Dooley (Trinity College Dublin)
Tiegang Fang (North Carolina State University)
Aamir Farooq (KAUST)
Michael Gollner (UC Berkeley)
Wang Han (The University of Edinburgh)
Jean-Pierre Hickey (Univ. Waterloo)
Xinyan Huang (Hong Kong Polytech Univ.)
Tai Jin (Zhejiang University)
Tina Kasper (University Duisburg-Essen)

Isaac Boxx (DLR) Co-Chair
Deanna Lacoste (KAUST)
Davide Laera (CERFACS)
Joseph Lefkowitz (Technion)
Qili Liu (Purdue University)
Yushuai Liu (IET, CAS)
Zhandong Wang (USTC)
Nicolas Noiray (ETH Zurich)
Guillermo Rein (Imperial College London)
Xingjian Wang (Florida Institute of Technology)
Jun Xia (Brunel University London)
Huahua Xiao (USTC)
Dong Yang (SUSTech)
Suo Yang (University of Minnesota)
Peng Zhao (University of Tennessee, Knoxville)
Disclaimer

- The presentation materials and comments made by the lecturer and participants are only for research and education purposes.
- All presentation materials are the sole properties of the lecturer and the Combustion Webinar organizer, and cannot be published and disseminated without written approvals from both parties.
- This lecture may be recorded and released to public.

- Please use Chat or Raise Hand to ask your questions.
- Please turnoff microphone. Webinar will be locked after 30 minutes.
- Recorded lectures are on Combustion Webinar YouTube Channel
 https://www.youtube.com/channel/UCSsO7e9Vln__RejSiAPF0JA