COMBUSTION WEBINAR

Multi-resolution Analysis for Assessment of Turbulent Combustion Models for LES
Speaker: Jack R. Edwards, North Carolina State University

Time: Apr. 16th, 2022
10 am EDT; 16:00 Paris; 22:00 Beijing.

Zoom Meeting ID: 959 5515 8623
Passcode: combustion
Check https://sun.ae.gatech.edu/combustion-webinar
for details or directly contact wenting.sun@aerospace.gatech.edu
Biography: Dr. Jack R. Edwards holds the Angel Family Professorship of Mechanical and Aerospace Engineering (MAE) at North Carolina State University and currently serves as Director of Aerospace Research. Dr. Edwards received his B.S (1988), M.S. (1990) and Ph.D. (1993) degrees from NC State and joined the faculty in 1994. From 2016-2020, he served as Associate Department Head and Director of Undergraduate Programs in MAE. He is an expert in computational fluid dynamics algorithm development, simulation and modeling of turbulent flows, and simulation and modeling of reacting and multi-phase flows. His current research thrusts include large-eddy simulations of turbulent combustion within high-speed aero-propulsion devices, modeling of hypersonic wall-bounded flows, scramjet fuel-injection processes, contaminant transport due to human motion, and GPU-based high-performance computing. He is a Fellow of AIAA and is the author or co-author of over 250 technical publications. His research efforts have been supported by AFOSR, ARO, ONR, U.S. EPA, DARPA, DTRA, NSF, Sandia National Labs, and AFRL, among others.

Abstract: This talk will outline the development of a Multi-Resolution Analysis (MRA) framework for evaluating subgrid models for turbulent combustion. The main premise of MRA is to evolve simultaneous large-eddy solutions on a set of nested meshes. The finest mesh allows for the most accurate, near DNS level capturing of the scales of turbulence and their effects on mixing and flame propagation. The velocity field calculated at the finest level is filtered to the coarser mesh levels and is used to constrain the velocity fields obtained at these levels. Multiple mesh levels can be utilized in this fashion to form a hierarchical structure of solutions. Interactions among scales resolved at each level can be quantified and used to assess the efficacy of subgrid models (implemented on the coarser meshes) in their ability to account for the effects of the unresolved scales. Applications to two classes of subgrid models, NCSU’s least-squares minimization (LSM) techniques and algebraic PaSR models, will be presented.
Combustion Webinar Organization Committees

Advisory Committee

Yiguang Ju (Princeton University)
Fei Qi (Shanghai Jiao Tong University)
Philippe Dagaut (CNRS-INSIS)
Gautam Kalghatgi (Univ of Oxford/Saudi Aramco)
Med Colket (RTRC, Retired)

Chung K. (Ed) Law (Princeton University)
Katharina Kohse-Höinghaus (University of Bielefeld)
Kaoru Maruta (Tohoku University)
Kelly Senecal (Convergent Science)
Toshiro Fujimori (IHI Inc.)

Technical Committee

Wenting Sun (Georgia Tech) Co-Chair
Lorenz R Boeck (FM global)
Liming Cai (Tongji University)
Zheng Chen (Peking University)
Matthew Cleary (The University of Sydney)
Stephen Dooley (Trinity College Dublin)
Tiegang Fang (North Carolina State University)
Aamir Farooq (KAUST)
Michael Gollner (UC Berkeley)
Wang Han (The University of Edinburgh)
Jean-Pierre Hickey (U. Waterloo)
Xinyan Huang (Hong Kong Polytech Univ.)
Tai Jin (Zhejiang University)
Tina Kasper (University Duisburg-Essen)

Isaac Boxx (DLR) Co-Chair
Deanna Lacoste (KAUST)
Davide Laera (CERFACS)
Joseph Lefkowitz (Technion)
Qili Liu (Purdue University)
Yushuai Liu (IET, CAS)
Zhandong Wang (USTC)
Nicolas Noiray (ETH Zurich)
Guillermo Rein (Imperial College London)
Xingjian Wang (Tsinghua University)
Jun Xia (Brunel University London)
Huahua Xiao (USTC)
Dong Yang (SUSTech)
Suo Yang (University of Minnesota)
Peng Zhao (University of Tennessee, Knoxville)
Disclaimer

• The presentation materials and comments made by the lecturer and participants are only for research and education purposes.
• All presentation materials are the sole properties of the lecturer and the Combustion Webinar organizer, and cannot be published and disseminated without written approvals from both parties.
• This lecture may be recorded and released to public.

• Please use Chat or Raise Hand to ask your questions.
• Please turnoff microphone. Webinar will be locked after 30 minutes.
• Recorded lectures are on Combustion Webinar YouTube Channel
 https://www.youtube.com/channel/UCSsO7e9VIn__RejSiAPF0JA