Intrinsic thermoacoustic feedback and its consequences for combustion noise and combustion dynamics

Speaker: Prof. Wolfgang Polifke, TU Munich

Time: April 30th 2022
10:00 NYC; 16:00 Paris; 22:00 Beijing.

Zoom Meeting ID: 959 5515 8623
Passcode: combustion
Check https://sun.ae.gatech.edu/combustion-webinar
Abstract: Thermoacoustic combustion instabilities represent a severe challenge for the development and reliable operation of efficient, flexible and low-emission combustion technology in gas turbines and rocket engines as well as industrial or domestic burners. Traditionally, thermoacoustic modes were understood to be associated with acoustic cavity modes of the combustion system. The discovery of the intrinsic thermoacoustic (ITA) feedback loop and associated eigenmodes shattered this paradigm: the complete set of eigenmodes of a combustor is now understood to be the aggregate of acoustic and ITA modes.

In this talk I will first reminisce from a personal perspective about the studies that led to the discovery of ITA feedback and ITA modes. Then I will present the current understanding of the structure and characteristic properties of ITA modes before exploring consequences of ITA feedback, such as convective scaling of thermoacoustic eigenfrequencies, resonant amplification of combustion noise, clusters of modes in annular and can-annular combustors, and exceptional points.
Combustion Webinar Organizing Committees

Advisory Committee
Yiguang Ju (Princeton University)
Fei Qi (Shanghai Jiao Tong University)
Philippe Dagaut (CNRS-INSIS)
Gautam Kalghatgi (Univ. of Oxford/Saudi Aramco)
Med Colket (RTRC, Retired)
Chung K. (Ed) Law (Princeton University)
Katharina Kohse-Höinghaus (University of Bielefeld)
Kaoru Maruta (Tohoku University)
Kelly Senecal (Convergent Science)
Toshiro Fujimori (IHI Inc.)

Technical Committee
Wenting Sun (Georgia Tech) Co-Chair
Lorenz R Boeck (FM global)
Liming Cai (Tongji University)
Zheng Chen (Peking University)
Matthew Cleary (The University of Sydney)
Stephen Dooley (Trinity College Dublin)
Tiegang Fang (North Carolina State University)
Aamir Farooq (KAUST)
Michael Gollner (UC Berkeley)
Wang Han (The University of Edinburgh)
Jean-Pierre Hickey (Univ. Waterloo)
Xinyan Huang (Hong Kong Polytech Univ.)
Tai Jin (Zhejiang University)
Tina Kasper (University Duisburg-Essen)
Isaac Boxx (DLR) Co-Chair
Deanna Lacoste (KAUST)
Davide Laera (CERFACS)
Joseph Lefkowitz (Technion)
Qili Liu (Purdue University)
Yushuai Liu (IET, CAS)
Zhandong Wang (USTC)
Nicolas Noiray (ETH Zurich)
Guillermo Rein (Imperial College London)
Xingjian Wang (Florida Institute of Technology)
Jun Xia (Brunel University London)
Huahua Xiao (USTC)
Dong Yang (SUSTech)
Suo Yang (University of Minnesota)
Peng Zhao (University of Tennessee, Knoxville)
Disclaimer

• The presentation materials and comments made by the lecturer and participants are only for research and education purposes.
• All presentation materials are the sole properties of the lecturer and the Combustion Webinar organizer, and cannot be published and disseminated without written approvals from both parties.
• This lecture may be recorded and released to public.

• Please use Chat or Raise Hand to ask your questions.
• Please turn off microphone. Webinar will be locked after 30 minutes.
• Recorded lectures are on Combustion Webinar YouTube Channel
 https://www.youtube.com/channel/UCSsO7e9VIn__RejSiAPF0JA