Substrate-embedded, magnetic core inductors for Integrated Voltage Regulators

Faculty: Dr. Himani Sharma
Prof. R. Tummala
Prof. M. Swaminathan

Students: Srinidhi Suresh
Claudio Alvarez

Industry Collaborator: Panasonic (Daisuke Sasaki, Kazuki Watanabe, Ryo Nagatsuka, Cheng Ping Lin, Tatsuyoshi Wada, Naoki Watanabe)
Outline

- Goals & Objectives
- Prior Work
- Technical Approach
- Results & Key Accomplishments
- Comparison with Prior Art
- Schedule
- Summary
Goals and Objectives

Design and demonstrate embedded inductors to yield a low power module with:

- Power density: 2 A/mm²
- Miniaturized modules:
 - Inductor thickness < 300 µm
 - Added thickness due to passives ~100 µm
- Single-stage power conversion close to load
- Short PDN path
- Losses (interconnects and passives): < 5%

Metrics

<table>
<thead>
<tr>
<th>Metrics</th>
<th>Objectives</th>
<th>Tasks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inductance (nH/mm²)</td>
<td>10-20 at 1 - 10 MHz 6 at 100 – 140 MHz</td>
<td>- Model and design magnetic-core inductors with target specifications</td>
</tr>
<tr>
<td>Current handling (A/mm²)</td>
<td>2</td>
<td>- Develop new process to fabricate and characterize substrate-integrated inductors</td>
</tr>
<tr>
<td>Thickness (mm)</td>
<td>0.3 – 0.5</td>
<td>- Develop an innovative process to embed LC into substrates</td>
</tr>
</tbody>
</table>
Prior Work

- New magnetic materials with high permeability but high loss:
 - Loss analysis indicated high permeability was critical in energy saving
- Measured electrical parameters and established mechanical performance of the composite:
 - Low-frequency permeability: 140 at 10 MHz, High-frequency permeability: 25 at 140 MHz
 - Good adhesion of composite to ABF (952 g/cm)
 - The magnetic composites were tested for their endurance to different via drilling processes: UV, IR, CO₂
- Modeled different inductor topologies for high permeability cores meeting target objectives

Embedding process was developed to integrate inductors into the substrate

Modeled and fabricated spiral (2D) inductors for low-frequency IVRs:

<table>
<thead>
<tr>
<th>Metrics</th>
<th>Inductance (nH/mm²)</th>
<th>DC Resistance (mΩ)</th>
<th>Thickness (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Objectives</td>
<td>10</td>
<td>< 10</td>
<td>0.5</td>
</tr>
<tr>
<td>Fabricated Performance</td>
<td>12.43</td>
<td>15.2</td>
<td>0.4</td>
</tr>
</tbody>
</table>
Inductor Packaging Evolution

- **Discrete inductors**
 - SMT Discrete
 - Large Height
 - Large foot-print

- **Substrate embedded passives**
 - Smaller Height
 - Small foot-print

- **Substrate embedded inductor**
 - Improved power density with advanced materials and designs
 - Miniatrurized modules
 - Higher efficiency
 - Short PDN path: Reduce the need for decoupling
 - Reduced impedance
Current Approach for Inductor Fabrication

Sumida PSI2: Inductor in package

- 2.8% increase in efficiency with 3-5 Amp current

Ref: Wang et al. ECTC 2016

Virginia Tech: Inductor in PCB Substrate

- PCB-embedded ferrite and metal flake composites

Ref: Su et al. IEEE 2013

Tyndall: On-chip inductors

- Thin magnetic films; coupled inductor designs

Ref: Wang et al. IEEE 2010
Embedding Challenges

- Low volumetric density
- Thicker component
- Self-assembled
- Low stability

Inductors:
- Low current
- Higher cost
- Low power handling
Substrate Material Selection

<table>
<thead>
<tr>
<th>Material</th>
<th>Ferrite</th>
<th>Sputtered thin-films</th>
<th>Metal-polymer composites</th>
</tr>
</thead>
<tbody>
<tr>
<td>Freq. stability</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Loss</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Permeability</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Scalability</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Current handling</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Substrate compatibility</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Ferrite, metal-polymer composites and sputtered thin-films are considered as the candidate for magnetic substrate.
- Metal-polymer composites provide the best trade-off for density and power-handling.

Current focus:

- Metal-polymer composites
Unique Approach at PRC

Innovative Inductor Designs

Unique inductor designs:
- Spiral inductors (2D)
- Novel toroidal inductors (3D)

Advanced Materials

Magnetic composites for high inductance density
- High permeability
- Trade-off high current handling, DC resistance, and inductance density

Advanced Integration Process

- Substrate-compatible process to integrate inductor into substrates
- Reliability testing - Thermal cycling and warpage

Spiral

Polymer insulation
Magnetic core

Substrate
Copper winding

Solenoid

Polymer insulation
Magnetic cores

Substrate
Copper winding

Characterization set-up

Electrical characterization
- L vs Frequency
- L vs Current
- DC resistance
Electrical Characterization of Composites

Courtesy: Panasonic

Required material properties for 96% efficiency:

- The permeability is somewhere in between 50 and 150
- Loss tangent must be less than 0.033
- Magnetic saturation field must be greater than 0.6 Tesla

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Low frequency</th>
<th>High frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Permeability (H/m)</td>
<td>150 at 10 MHz</td>
<td>25 at 140 MHz</td>
</tr>
<tr>
<td>Loss tangent</td>
<td>0.146</td>
<td>0.230</td>
</tr>
</tbody>
</table>

\[\mu' = 76 \]

\[\tan \delta = 0.034 \]

\[\mu'' = 2.6 \]

\[I = 3.5A \]
Modeling of Inductor Topologies using Composites

- Planar inductors show lower current handling, but are easier to fabricate
- Solenoid inductors have a comparable inductance but higher current handling

Low-Frequency Material Designed Parameters:

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>I_{DC} [A]</td>
<td><1.25</td>
<td><1.25</td>
<td><1.00</td>
<td><1.00</td>
</tr>
<tr>
<td>L [nH]</td>
<td>23.8</td>
<td>44.1</td>
<td>66.6</td>
<td>116.9</td>
</tr>
<tr>
<td>Inductance Density [nH/mm3]</td>
<td>88.0</td>
<td>101.0</td>
<td>151.6</td>
<td>164.6</td>
</tr>
<tr>
<td>R_{DC} [mΩ]</td>
<td>5.5</td>
<td>8.5</td>
<td>9.8</td>
<td>15.7</td>
</tr>
<tr>
<td>R_{AC} [mΩ]</td>
<td>227</td>
<td>426</td>
<td>635</td>
<td>1102</td>
</tr>
<tr>
<td>R_{AC} [mΩ/nH]</td>
<td>9.6</td>
<td>9.7</td>
<td>9.5</td>
<td>9.4</td>
</tr>
</tbody>
</table>

- Toroidal inductors show highest inductance because of closed magnetic loops
Fabrication Process Flow

1. Magnetic sheet substrate
 - 300 um

2. Laser drill slot with a fempto-laser

3. Laminate the polymer and fill the slots.

4. Laser drill the vias in slots

5. Deposit an electroless layer of copper

6. Laminate a negative photoresist

7. Place a positive mask and expose to UV light

8. Remove the photoresist that was not exposed.

9. Electroplate with thick copper

10. Etch out the photoresist and seed copper
Fabrication of Inductor Topologies

Demonstration of substrate-embedded 2D and 3D inductors for low and high-frequency IVRs

Metrics

<table>
<thead>
<tr>
<th>Metrics</th>
<th>2D Low Frequency Objectives</th>
<th>2D Low Frequency Fabricated Values</th>
<th>2D High Frequency Objectives</th>
<th>2D High Frequency Fabricated Values</th>
<th>Solenoid Low Frequency Objectives</th>
<th>Solenoid Low Frequency Fabricated Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inductance Density (nH/mm²)</td>
<td>10-20</td>
<td>12.38</td>
<td>6</td>
<td>8.21</td>
<td>10-20</td>
<td>To be Measured</td>
</tr>
<tr>
<td>DC Resistance (mΩ)</td>
<td>5 - 10</td>
<td>9.83</td>
<td>< 10</td>
<td>7.72</td>
<td>5 - 10</td>
<td></td>
</tr>
<tr>
<td>Thickness (µm)</td>
<td>500</td>
<td>435</td>
<td>200 - 300</td>
<td>315</td>
<td>200 - 300</td>
<td></td>
</tr>
</tbody>
</table>

Optical View

- Top view of spiral inductors
- X-section view
- Optical view of planar inductor

Images

- The top view of spiral inductors
- Optical view of planar inductor
- X-section view of substrate-embedded inductors
Comparison with Prior Art

- Discrete inductors can accommodate higher thickness which leads to high inductance density with lower resistance.
- Low loss tangent materials with moderate permeability have been simulated to show high efficiency embedded inductors with low DC resistance.
- There is a trade-off between inductance density and DC resistance.

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Targets</th>
<th>GT-PRC</th>
<th>On-chip inductor</th>
<th>Discrete inductor</th>
</tr>
</thead>
<tbody>
<tr>
<td>L/R (nH/mΩ)</td>
<td>~ 20</td>
<td>~ 9.6</td>
<td>0.18</td>
<td>23</td>
</tr>
<tr>
<td>Current handling (A/mm²)</td>
<td>2</td>
<td>2</td>
<td>3-4</td>
<td>0.6</td>
</tr>
<tr>
<td>DC resistance (mΩ)</td>
<td>< 10</td>
<td>7.72</td>
<td>1200</td>
<td>5.2</td>
</tr>
</tbody>
</table>
Schedule

- Toroidal single inductor is already designed
- Optimization of fabrication process ongoing
- A single inductor based 4-phase buck converter is in design step
- A Journal paper will be prepared with the analysis results to date
- Next step will be preparing a measurement setup to measure the inductor under DC current bias and with triangular current waveform
- Next iteration will be the design of a tapped inductor-based converter
Summary

- Modeled and designed spiral inductors for target specifications as below.
 - Low-Frequency: L - 10 nH/mm², R – 5 mΩ, thickness – 0.5 mm
 - High-Frequency: L – 6 nH/mm², R – < 10 mΩ, thickness – 0.3 mm
- Developed and optimized process flow for fabricating substrate integrated inductors.
- Fabricated and characterized planar inductors for low and high-frequency applications:
 - Low-Frequency: L – 12.38 nH/mm², R – 9.83 mΩ
 - High-Frequency: L – 8.21 nH/mm², R – 7.72 mΩ
- Fabricated solenoid inductors for low and high-frequency applications
- Modeled novel toroid inductors and currently optimizing the fabrication process

Next Milestones:
- Fabricate toroid inductors and measure the inductance
- Establish effect of undercut on the inductance density
- Lower losses with high L/R_{dc} with filled vias
- Model and fabricate inductors for 48V-1V applications using very low loss materials