Fundamental Groups of low-genus Lefschetz Fibrations

Sierra Knavel, Georgia Institute of Technology Advised by John Etnyre

AMS Special Session on Topological Interactions of Contact

and Symplectic Manifolds

March 2024

Why Lefschetz Fibrations?

Part I

Definitions

Remarks:

- 1. the genus of the Lefschetz fibration is the genus of a **regular fiber**
- 2. the **monodromy** determines the Lefschetz fibration

Definition:

- \blacktriangleright embedded S^1 in base space
- \succ pre-image is $S^1 \times \Sigma_g$
- > the **monodromy** is the self-diffeo of a regular fiber Σ_g to itself

Remarks:

- the **monodromy** is the self-diffeo of a regular fiber Σ_g to itself
- Denoted ϕ
- $\phi \in Mod(\Sigma_g)$

No critical values in D^2

- $\phi = \text{how to glue } \Sigma_g$ to itself
- $\phi = Id$

One critical value in D^2 :

- $\phi = \tau_{\alpha}$
- Left-handed Dehn twist about vanishing cycle α

Part II

Motivation

Asking Q's about the fundamental group

What's known:

Gompf: every finitely presented group is π_1 of some closed symplectic 4 manifold

A new construction of symplectic manifolds, 1995

Lefschetz Fibrations and an invariant of finitely presented groups, 2009

Korkmaz's construction:

Korkmaz's construction:

Part III

Results

Results:

Possible π_1 for a genus-2 LF over S^2 :

 $0 = \langle | \rangle$ $\mathbb{Z} = \langle a | \rangle$ $\mathbb{Z}_{n} = \langle a | a^{n} \rangle$ $\mathbb{Z} \bigoplus \mathbb{Z} = \langle a, b | [a, b] \rangle$ $\mathbb{Z}_{n} \bigoplus \mathbb{Z} = \langle a, b | [a, b], a^{n} \rangle$ $\mathbb{Z}_{n} \bigoplus \mathbb{Z}_{m} = \langle a, b | [a, b], a^{n}, b^{m} \rangle$

Results:

Future questions:

- 1. Always \leq 2 generators?
- 2. Always Abelian?

Possible π_1 for a genus-2 LF over S^2 :

 $0 = \langle | \rangle$ $\mathbb{Z} = \langle a | \rangle$ $\mathbb{Z}_{n} = \langle a | a^{n} \rangle$ $\mathbb{Z} \bigoplus \mathbb{Z} = \langle a, b | [a, b] \rangle$ $\mathbb{Z}_{n} \bigoplus \mathbb{Z} = \langle a, b | [a, b], a^{n} \rangle$ $\mathbb{Z}_{n} \bigoplus \mathbb{Z}_{m} = \langle a, b | [a, b], a^{n}, b^{m} \rangle$

Current progress:

Current progress:

Thanks!

sknavel3@gatech.edu

Florida State University's Land Acknowledgement:

Florida State University acknowledges that its Florida campuses are located on the ancestral and traditional homelands of the Seminole Tribe of Florida, the Miccosukee Tribe of Indians of Florida, the Apalachee, Seminole and Muscogee Nations, the ancient Calusa, Uzita and Tocobaga, and others. We pay respect to the resiliency of their tribal members, past and present, and to all Indigenous peoples.