Genus-2 Lefschetz Fibrations

Sierra Knavel (she/her) October 16, 2024 Georgia Institute of Technology Advised by John Etnyre

History of Lefschetz Fibrations

- Solomon Lefschetz (1884-1972)
- Worked on applications of algebraic topology in algebraic geometry

"La théorie des surfaces est de beaucoup la plus riche et la mieux perfectionnée."

Géométrie sur les surfaces et les variétés algébriques, 1929

Image from wikipedia.com

Why Lefschetz Fibrations?

What are we talking about today?

- What is a Lefschetz fibration? 😀
- What's so special about genus-2 fibers? 🤯
- What do we know about them?
- What have I figured out? 😏
- What haven't I figured out? So

Part I

Definitions

Remarks:

- 1. the genus of the Lefschetz fibration is the genus of a **regular fiber**
- 2. the **monodromy** determines the Lefschetz fibration
 - ...must be recording genus and vanishing cycles?

Definition:

- \blacktriangleright embedded S^1 in base space
- \succ pre-image is $S^1 \times \Sigma_g$
- > the **monodromy** is the self-diffeo of a regular fiber Σ_g to itself

Remarks:

- the **monodromy** is the self-diffeo of a regular fiber Σ_g to itself
- Denoted ϕ
- $\phi \in Mod(\Sigma_g)$

No critical values in D^2

- $\phi = \text{how to glue } \Sigma_g$ to itself
- $\phi = Id$

One critical value in D^2 :

- $\phi = \tau_{\alpha}$
- Positive (left-handed) Dehn twist about vanishing cycle α

Monodromy is identity in $Mod(\Sigma_g)$ of a Lefschetz fibration

Why is $\phi \in Mod(\Sigma_g)$?

- We are only considering Lefschetz fibrations $f: X \to S^2$
- Let $S^1 \subset S^2$ enclose all critical values q_1, q_2, \dots, q_N
- Then,

 $\phi = \tau_{q_1} \circ \tau_{q_2} \circ \cdots \circ \tau_{q_N} = id \in Mod(\Sigma_g)$

Example of a genus-2 Lefschetz fibration

$$\phi = \tau_e \tau_{x_1} \tau_{x_2} \tau_{x_3} \tau_d \tau_c \tau_{x_4}$$

Remarks:

- Vanishing cycles e, d, and c are separating, whereas x_1, x_2, x_3 , and x_4 are non-separating
- This Lefschetz fibration is said to be **length 7** and of type (4,3) = (n,s)

Part II

Motivation

What's special about genus 2?

- All vanishing cycles of a genus-2 Lefschetz fibration are loops on $\boldsymbol{\Sigma}_2$
- All embedded loops on $\boldsymbol{\Sigma}_2$ are hyperelliptic
- If $f: X \to S^2$ is of type (n, s), then

number of non-separating vanishing cycles

What else do we know?

Part III

Some results

number of non-separating vanishing cycles

What else do we think?

Cai-Chafee-Lytle-Vorontsova showed that possible fundamental groups of genus-2 Lefschetz Fibrations include $0 = \langle | \rangle$ $\mathbb{Z} = \langle a | \rangle$ $\mathbb{Z} = \langle a | a^{n} \rangle$ $\mathbb{Z}_{n} = \langle a | a^{n} \rangle$ $\mathbb{Z} \bigoplus \mathbb{Z} = \langle a, b | [a, b] \rangle$ $\mathbb{Z}_{n} \bigoplus \mathbb{Z} = \langle a, b | [a, b], a^{n} \rangle$ $\mathbb{Z}_{n} \bigoplus \mathbb{Z}_{m} = \langle a, b | [a, b], a^{n} \rangle$

C00

What else do we think?

Cai-Chafee-Lytle-Vorontsova showed that possible fundamental groups of genus-2 Lefschetz Fibrations include $0 = \langle | \rangle$ $\mathbb{Z} = \langle a | \rangle$ $\mathbb{Z} = \langle a | a^{n} \rangle$ $\mathbb{Z} \oplus \mathbb{Z} = \langle a, b | [a, b] \rangle$ $\mathbb{Z}_{n} \oplus \mathbb{Z} = \langle a, b | [a, b], a^{n} \rangle$ $\mathbb{Z}_{n} \oplus \mathbb{Z}_{m} = \langle a, b | [a, b], a^{n}, b^{m} \rangle$

What else do we think?

Cai-Chafee-Lytle-Vorontsova showed that possible fundamental groups of genus-2 Lefschetz Fibrations include $0 = \langle | \rangle$ $\mathbb{Z} = \langle a | \rangle$ $\mathbb{Z} = \langle a | a^{n} \rangle$ $\mathbb{Z} \bigoplus \mathbb{Z} = \langle a, b | [a, b] \rangle$ $\mathbb{Z} \bigoplus \mathbb{Z} = \langle a, b | [a, b], a^{n} \rangle$ $\mathbb{Z}_{n} \bigoplus \mathbb{Z}_{m} = \langle a, b | [a, b], a^{n}, b^{m} \rangle$

Hear ye, hear ye! By proclamation of this Holy Hypothesis:

Lo, it is thusly declared that no genus-2 Lefschetz fibration doth exist wherein three or more mighty generators do cometh forth to bear the burden of its fundamental group. Verily, it is also perchance possible that, in all such cases, the fundamental group be evermore Abelian in nature!

<u>Claim</u>: These are guaranteed not simply connected Proof:

Suppose
$$b_1(X) = 0$$
. Then,
 $b_2^+(X) = 2\chi_h(X) + 2b_1(X) - 1 = \frac{1}{2}(e(X) + \sigma(X)) + b_1 - 1$
 $= \frac{1}{2}(\frac{2}{5}n + \frac{4}{5}s) - 3 = \frac{1}{5}n + \frac{2}{5}s - 3$

Recall:
$$\sigma(X) = b_2^+ - b_2^-$$
, so $b_2^- = b_2^+ - \sigma(X)$
herefore $b_2^- = \frac{1}{5}n + \frac{2}{5}s - 3 + \frac{3}{5}n + \frac{1}{5}s = \frac{2}{5}(2n) + \frac{3}{5}s - 3$
Remark: these sit on the line $2n - s = 5$, so
 $b_2^- = \frac{2}{5}(s+5) + \frac{3}{5}s - 3$
 $= s - 1$

But, it is known that each separating vanishing cycle contributes to

 $H_2(X)$. In fact, $b_2^- \ge s + 1$. So contradiction.

What else do we know?

<u>Claim</u>: these Lefschetz Fibrations of type (n, 2n - 5), if they exist, are indecomposable. That is, they are prime Lefschetz fibrations.

A Lefschetz fibration is indecomposable if it cannot be realized as the fiber sum of two nontrivial Lefschetz fibrations The proof of this claim requires understanding the **fiber sum**.

Fiber Summing two Lefschetz fibrations outputs a new Lefschetz fibration.

The "addition" respects the fiber direction and thus is only defined when the genera of the fibrations agree.

- 1. Let $C_1 = F \times D^2$ in X_1
- 2. And $C_2 = F \times D^2$ in X_2
- 3. Remove C_i from X_i
- 4. Glue $\partial(X_1 C_1)$ to $\partial(X_2 - C_2)$ by a fiberpreserving, orientation

reversing diffeo

Part III

Some final thoughts

(yes, it's almost over)

		1 "	Reit ST	C CAR	2153320	*75207	0*75-802	1000 Otri	himali seta n	18 23M	and ton stor	S Lound AF	A731020	angen page	Alerson .	112×34	x b1 , bx 48	b b The shi	3 DX	~	P T Star	15×	15	Dr The shi	bx	*
			n.		/	-		75 M	eule.	Enato new med	at bit	met Can	5100 c102 12	Sto Or Chi	n" b	,	»/	15			15	/	/	15		
4	3	FALSE	7	2	5	-5	-15	3	-3	0	2	15	-3	0	2	5	TRUE	1	4	TRUE	0	3	FALSE	-1	2	FALSE
6	2	FALSE	8	7	0	-10 .	-20	4	-4	5	0	21	-4	0	2	6	TRUE	1	5	TRUE	0	4	TRUE	-1	3	TRUE
6	7	TRUE	13	2	35	25 .	15	9	-5	0	2	51	3	1	4	9	TRUE	3	8	TRUE	2	7	FALSE	1	6	FALSE
8	6	FALSE	14	7	30	20.	10	10	-6	5	0	57	2	1	4	10	TRUE	3	9	TRUE	2	8	TRUE	1	7	TRUE
8	11	TRUE		2	65	55 .	45	15	-7	0	2	87	9	2	6	13	TRUE	5	12	TRUE	4	11	FALSE	3	10	FALSE
10	5	FALSE					\mathbb{Q}	11	-7	10	0	63	1	1	4	11	TRUE	3	10	TRUE	2	9	TRUE	1	8	TRUE
10	10	TRUE	2		0		\sim)	16	-8	5	0	93	8	2	6	14	TRUE	5	13	TRUE	4	12	TRUE	3	11	TRUE
10	15	TRUE	25			85	15	21	-9	0	2	123	15	3	8	17	TRUE	7	16	TRUE	6	15	FALSE	5	14	FALSE
12	4	FALSE	16	17	20	10 .	0	12	-8	15	0	69	0	1	4	12	TRUE	3	11	TRUE	2	10	TRUE	1	9	TRUE
12	9	FALSE	21	12	55	45 .	35	17	-9	10	0	99	7	2	6	15	TRUE	5	14	TRUE	4	13	TRUE	3	12	TRUE
12	14	TRUE	26		90	80 .	70	22	-10	5	0	129	14	3	8	18	TRUE	7	17	TRUE	6	16	TRUE	5	15	TRUE
12	19	TRUE	31	╘╵	AYA	115 .	105	27	-11	0	2	159	21	4	10	21	TRUE	9	20	TRUE	8	19	FALSE	7	18	FALSE
14	3	FALSE	17	2	UAL	5.	-5	13	-9	20	0	75	-1	1	4	13	TRUE	3	12	TRUE	2	11	TRUE	1	10	TRUE
14	8	FALSE	22		50	40 .	30	18	-10	15	0	105	6	2	6	16	TRUE	5	15	TRUE	4	14	TRUE	3	13	TRUE
14	13	FALSE	27	12	85	/5 .	100	23	-11	10	0	135	13	5	8	19	TRUE	/	18	TRUE	6	1/	TRUE	5	16	TRUE
14	18	TILE	32	2	120	145	100	28	-12	5	0	105	20	4	10	22	TRUE	9	21	TRUE	0	20	TRUE	/	19	TRUE
14	25	EL E	5/		100	145.	100	33	-15	25	2	195	21	1	12	25	TRUE	211	12	TRUE	10	25	TOULE	9	11	TOUS
10	2			f/ 🕋 }		HA	$H \oplus $	10	-10	20	0	111	-2	2	4	14	TRUE	5	15	TRUE	4	12	TRUE	2	11	TRUE
16	12		╘╫ч	₩₩			$R \ll$	024	-11	15	0	141	12	2	8	20	TRUE	7	10	TRUE	6	10	TRUE	5	17	TRUE
16	17	TRUE	33	12	115	105.	f(⊖)	29	-13	10	0	171	19	4	10	23	TRUE	9	22	TRUE	8	21	TRUE	7	20	TRUE
16	22	TRUE	38	7	150	140	130	34	-14	5	0	201	26	5	12	26	TRUE	11	25	TRUE	10	24	TRUE	9	23	TRUE
16	27	TRUE	43	2	185	175 .	165	39	-15	0	2	231	33	6	14	29	TRUE	13	28	TRUE	12	27	FALSE	11	26	FALSE
18	1	FALSE	19	32	5	-5 .	-15	15	-11	30	0	87	-3	1	4	15	TRUE	3	14	TRUE	2	13	TRUE	1	12	TRUE
18	6	FALSE	24	27	40	30 .	20	20	-12	25	0	117	4	2	6	18	TRUE	5	17	TRUE	4	16	TRUE	3	15	TRUE
18	11	FALSE	29	22	75	65 .	55	25	-13	20	0	147	11	3	8	21	TRUE	7	20	TRUE	6	19	TRUE	5	18	TRUE
18	16	FALSE	34	17	110	100 .	90	30	-14	15	0	177	18	4	10	24	TRUE	9	23	TRUE	8	22	TRUE	7	21	TRUE
18	21	TRUE	39	12	145	135 .	125	35	-15	10	0	207	25	5	12	27	TRUE	11	26	TRUE	10	25	TRUE	9	24	TRUE
18	26	TRUE	44	7	180	170.	160	40	-16	5	0	237	32	6	14	30	TRUE	13	29	TRUE	12	28	TRUE	11	27	TRUE
18	31	TRUE	49	2	215	205	195	45	-17	0	2	267	39	7	16	33	TRUE	15	32	TRUE	14	31	FALSE	13	30	FALSE
20	5	FALSE	25	32	35	25	15	21	-13	30	0	123	3	2	6	19	TRUE	5	18	TRUE	4	17	TRUE	3	16	TRUE
20	10	FALSE	30	27	70	60	50	26	-14	25	0	153	10	3	8	22	TRUE	7	21	TRUE	6	20	TRUE	5	19	TRUE
20	15	FALSE	35	22	105	95	85	31	-15	20	0	183	17	4	10	25	TRUE	9	24	TRUE	8	23	TRUE	7	22	TRUE
20	20	TRUE	40	17	140	130	120	36	-16	15	0	213	24	5	12	28	TRUE	11	27	TRUE	10	26	TRUE	9	25	TRUE
20	25	TRUE	45	12	175	165	155	41	-17	10	0	243	31	6	14	31	TRUE	13	30	TRUE	12	29	TRUE	11	28	TRUE
20	30	TRUE	50	7	210	200	190	46	-18	5	0	273	38	7	16	34	TRUE	15	33	TRUE	14	32	TRUE	13	31	TRUE
20	35	TRUE	55	2	245	235	225	51	-19	0	2	303	45	8	18	37	TRUE	17	36	TRUE	16	35	FALSE	15	34	FALSE
22	4	FALSE	26	37	30	20	10	22	-14	35	0	129	2	2	6	20	TRUE	5	19	TRUE	4	18	TRUE	3	17	TRUE
22	9	FALSE	31	32	65	55	45	27	-15	30	0	159	9	3	8	23	TRUE	7	22	TRUE	6	21	TRUE	5	20	TRUE
22	14	FALSE	36	27	100	90	80	32	-16	25	0	189	16	4	10	26	TRUE	9	25	TRUE	8	24	TRUE	7	23	TRUE
22	19	FALSE	41	22	135	125	115	37	-1/	20	0	219	23	5	12	29	TRUE	11	28	TRUE	10	27	TRUE	9	26	TRUE
22	24	TRUE	46	17	1/0	160	150	42	-18	15	0	249	30	0	14	32	TRUE	13	31	TRUE	12	30	TRUE	11	29	TRUE
22	29	TRUE	51	12	205	195	185	4/	-19	10	0	2/9	3/	/	10	35	TRUE	15	34	TRUE	14	33	TRUE	15	32	TRUE
22	34	TRUE	50	2	240	230	220	52	-20	5	0	220	44 E1	8	18	38	TRUE	1/	37	TRUE	10	30	TRUE	15	35	FALSE
22	29	INUE	01	2	2/5	205	200	5/	-21	0	2	223	51	9	20	41	TRUE	19	40	TRUE	18	59	FALSE	1/	50	FALSE